Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune mechanisms in medium and large-vessel vasculitis

Key Points

  • Giant cell arteritis (GCA), the most frequent form of large-vessel vasculitis, occurs in a strictly defined tissue context and requires corruption of the immune-privileged tissue niche of the arterial wall

  • Receptors and ligands from the Notch family facilitate information exchange between vascular stromal cells and immune cells, and are critically involved in the development of vasculitis

  • The therapeutic potential of targeting the stromal compartment in vasculitis is currently unexplored

  • Granulomatous inflammation in GCA is characterized by a cytokine cascade, in which the initiating signals are poorly defined, but the many effectors match those encountered in protective immune responses

  • A cytokine cluster involving the IL-6–IL-17 axis is highly active in early and untreated disease, is rapidly suppressed by corticosteroids and is redundant for vasculitis

  • A cytokine cluster centring on the IL-12–IFN-γ axis is more resistant to immunosuppression and reveals pathogenic similarities between allograft arteriosclerosis and GCA

Abstract

Vasculitis of the medium and large arteries, most often presenting as giant cell arteritis (GCA), is an infrequent, but potentially fatal, type of immune-mediated vascular disease. The site of the aberrant immune reaction, the mural layers of the artery, is strictly defined by vascular dendritic cells, endothelial cells, vascular smooth muscle cells and fibroblasts, which engage in an interaction with T cells and macrophages to, ultimately, cause luminal stenosis or aneurysmal wall damage of the vessel. A multitude of effector cytokines, all known as critical mediators in host-protective immunity, have been identified in vasculitic lesions. Two dominant cytokine clusters—the IL-6–IL-17 axis and the IL-12–IFN-γ axis—have been linked to disease activity. These two clusters seem to serve different roles in the vasculitic process. The IL-6–IL-17 cluster is highly responsive to standard corticosteroid therapy, whereas the IL-12–IFN-γ cluster is resistant to steroid-mediated immunosuppression. The information exchange between vascular and immune cells and stabilization of the vasculitic process involves members of the Notch receptor and ligand family. Focusing on elements in the tissue context of GCA, instead of broadly suppressing host immunity, might enable a more tailored therapeutic approach that avoids unwanted adverse effects of aggressive immunosuppression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TH1-cell-mediated and TH17-cell-mediated immunity in giant cell arteritis.
Figure 2: The IL-6–IL-17 cytokine cluster in giant cell arteritis.
Figure 3: The IL-12–IFN-γ cytokine cluster in giant cell arteritis.
Figure 4: Notch–Notch ligand interactions in vessel wall inflammation.

Similar content being viewed by others

References

  1. Gabriel, S. E. & Michaud, K. Epidemiological studies in incidence, prevalence, mortality, and comorbidity of the rheumatic diseases. Arthritis Res. Ther. 11, 229 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Phillip, R. & Luqmani, R. Mortality in systemic vasculitis: a systematic review. Clin. Exp. Rheumatol. 26, S94–S104 (2008).

    CAS  PubMed  Google Scholar 

  3. Richards, B. L., March, L. & Gabriel, S. E. Epidemiology of large-vessel vasculidities. Best Pract. Res. Clin. Rheumatol. 24, 871–883 (2010).

    Article  PubMed  Google Scholar 

  4. Weiss, P. F. Pediatric vasculitis. Pediatr. Clin. North Am. 59, 407–423 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Legein, B., Temmerman, L., Biessen, E. A. & Lutgens, E. Inflammation and immune system interactions in atherosclerosis. Cell. Mol. Life Sci. 70, 3847–3869 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 2045–2051 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mackie, S. L., Hensor, E. M., Morgan, A. W. & Pease, C. T. Should I send my patient with previous giant cell arteritis for imaging of the thoracic aorta? A systematic literature review and meta-analysis. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2012-202145.

  8. Kermani, T. A. et al. Large-vessel involvement in giant cell arteritis: a population-based cohort study of the incidence-trends and prognosis. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2012-202408.

  9. Luqmani, R. Large vessel vasculitides: update for the cardiologist. Curr. Opin. Cardiol. 27, 578–584 (2012).

    Article  PubMed  Google Scholar 

  10. Weyand, C. M. & Goronzy, J. J. Medium- and large-vessel vasculitis. N. Engl. J. Med. 349, 160–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Jennette, J. C. et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 65, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Shiran, H., Haddad, F., Miller, D. C. & Liang, D. Comparison of aortic root diameter to left ventricular outflow diameter versus body surface area in patients with marfan syndrome. Am. J. Cardiol. 110, 1518–1522 (2012).

    Article  PubMed  Google Scholar 

  13. Roman, M. J., Devereux, R. B., Kramer-Fox, R. & O'Loughlin, J. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am. J. Cardiol. 64, 507–512 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Heistad, D. D. & Marcus, M. L. Role of vasa vasorum in nourishment of the aorta. Blood Vessels 16, 225–238 (1979).

    CAS  PubMed  Google Scholar 

  15. Kassab, G. S. Biomechanics of the cardiovascular system: the aorta as an illustratory example. J. R. Soc. Interface 3, 719–740 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  PubMed  Google Scholar 

  17. Lacolley, P., Regnault, V., Nicoletti, A., Li, Z. & Michel, J. B. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc. Res. 95, 194–204 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. McGettrick, H. M., Butler, L. M., Buckley, C. D., Rainger, G. E. & Nash, G. B. Tissue stroma as a regulator of leukocyte recruitment in inflammation. J. Leukoc. Biol. 91, 385–400 (2012).

    Article  PubMed  Google Scholar 

  19. Weyand, C. M. et al. Vascular dendritic cells in giant cell arteritis. Ann. NY Acad. Sci. 1062, 195–208 (2005).

    Article  PubMed  Google Scholar 

  20. Pryshchep, O., Ma-Krupa, W., Younge, B. R., Goronzy, J. J. & Weyand, C. M. Vessel-specific Toll-like receptor profiles in human medium and large arteries. Circulation 118, 1276–1284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stenmark, K. R. et al. The adventitia: essential regulator of vascular wall structure and function. Annu. Rev. Physiol. 75, 23–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Ma-Krupa, W. et al. Activation of arterial wall dendritic cells and breakdown of self-tolerance in giant cell arteritis. J. Exp. Med. 199, 173–183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krupa, W. M. et al. Trapping of misdirected dendritic cells in the granulomatous lesions of giant cell arteritis. Am. J. Pathol. 161, 1815–1823 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wagner, A. D., Bjornsson, J., Bartley, G. B., Goronzy, J. J. & Weyand, C. M. Interferon-γ-producing T cells in giant cell vasculitis represent a minority of tissue-infiltrating cells and are located distant from the site of pathology. Am. J. Pathol. 148, 1925–1933 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Martinez-Taboada, V., Brack, A., Hunder, G. G., Goronzy, J. J. & Weyand, C. M. The inflammatory infiltrate in giant cell arteritis selects against B lymphocytes. J. Rheumatol. 23, 1011–1014 (1996).

    CAS  PubMed  Google Scholar 

  26. Ma-Krupa, W., Kwan, M., Goronzy, J. J. & Weyand, C. M. Toll-like receptors in giant cell arteritis. Clin. Immunol. 115, 38–46 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Deng, J. et al. Toll-like receptors 4 and 5 induce distinct types of vasculitis. Circ. Res. 104, 488–495 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koenig, C. L. et al. Identification of a Burkholderia-like strain from temporal arteries of subjects with giant cell arteritis. Arthritis Rheum. 64, S373 (2012).

    Google Scholar 

  29. Rodriguez-Pla, A. & Stone, J. H. Vasculitis and systemic infections. Curr. Opin. Rheumatol. 18, 39–47 (2006).

    Article  PubMed  Google Scholar 

  30. Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4592–4598 (2011).

    Article  PubMed  Google Scholar 

  31. Dejaco, C. et al. NKG2D stimulated T-cell autoreactivity in giant cell arteritis and polymyalgia rheumatica. Ann. Rheum. Dis. 72, 1852–1859 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Dasgupta, B. & Panayi, G. S. Interleukin-6 in serum of patients with polymyalgia rheumatica and giant cell arteritis. Br. J. Rheumatol. 29, 456–458 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Roche, N. E. et al. Correlation of interleukin-6 production and disease activity in polymyalgia rheumatica and giant cell arteritis. Arthritis Rheum. 36, 1286–1294 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Hernandez-Rodriguez, J. et al. Tissue production of pro-inflammatory cytokines (IL-1β, TNF-α and IL-6) correlates with the intensity of the systemic inflammatory response and with corticosteroid requirements in giant-cell arteritis. Rheumatology (Oxford) 43, 294–301 (2004).

    Article  CAS  Google Scholar 

  35. Weyand, C. M. & Goronzy, J. J. Giant-cell arteritis and polymyalgia rheumatica. Ann. Intern. Med. 139, 505–515 (2003).

    Article  PubMed  Google Scholar 

  36. Bode, J. G., Albrecht, U., Haussinger, D., Heinrich, P. C. & Schaper, F. Hepatic acute phase proteins--regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling. Eur. J. Cell Biol. 91, 496–505 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Weyand, C. M., Fulbright, J. W., Hunder, G. G., Evans, J. M. & Goronzy, J. J. Treatment of giant cell arteritis: interleukin-6 as a biologic marker of disease activity. Arthritis Rheum. 43, 1041–1048 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Kishimoto, T. IL-6: from its discovery to clinical applications. Int. Immunol. 22, 347–352 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M. & Murphy, K. M. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24, 677–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Bettelli, E., Korn, T. & Kuchroo, V. K. Th17: the third member of the effector T cell trilogy. Curr. Opin. Immunol. 19, 652–657 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, Z., Laurence, A. & O'Shea, J. J. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation. Semin. Immunol. 19, 400–408 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harrington, L. E., Mangan, P. R. & Weaver, C. T. Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr. Opin. Immunol. 18, 349–356 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Maddur, M. S., Miossec, P., Kaveri, S. V. & Bayry, J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am. J. Pathol. 181, 8–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, W. W. et al. Regulating human Th17 cells via differential expression of IL-1 receptor. Blood 115, 530–540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Torchinsky, M. B. & Blander, J. M. T helper 17 cells: discovery, function, and physiological trigger. Cell. Mol. Life Sci. 67, 1407–1421 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Donnelly, R. P. et al. Interleukin-26: an IL-10-related cytokine produced by Th17 cells. Cytokine Growth Factor Rev. 21, 393–401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rutz, S., Eidenschenk, C. & Ouyang, W. IL-22, not simply a Th17 cytokine. Immunol. Rev. 252, 116–132 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Sutherland, A. P. et al. IL-21 promotes CD8+ CTL activity via the transcription factor T-bet. J. Immunol. 190, 3977–3984 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Camporeale, A. & Poli, V. IL-6, IL-17 and STAT3: a holy trinity in auto-immunity? Front. Biosci. 17, 2306–2326 (2012).

    Article  CAS  Google Scholar 

  50. Schutyser, E., Struyf, S. & Van Damme, J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 14, 409–426 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Deng, J., Younge, B. R., Olshen, R. A., Goronzy, J. J. & Weyand, C. M. Th17 and Th1 T-cell responses in giant cell arteritis. Circulation 121, 906–915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Samson, M. et al. Th1 and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum. 64, 3788–3798 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Terrier, B. et al. Interleukin-21 modulates Th1 and Th17 responses in giant cell arteritis. Arthritis Rheum. 64, 2001–2011 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Wagner, A. D., Goronzy, J. J. & Weyand, C. M. Functional profile of tissue-infiltrating and circulating CD68+ cells in giant cell arteritis. Evidence for two components of the disease. J. Clin. Invest. 94, 1134–1140 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weyand, C. M., Wagner, A. D., Bjornsson, J. & Goronzy, J. J. Correlation of the topographical arrangement and the functional pattern of tissue-infiltrating macrophages in giant cell arteritis. J. Clin. Invest. 98, 1642–1649 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kimura, A. & Kishimoto, T. IL-6: regulator of Treg/Th17 balance. Eur. J. Immunol. 40, 1830–1835 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Barbi, J., Pardoll, D. & Pan, F. Metabolic control of the Treg/Th17 axis. Immunol. Rev. 252, 52–77 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Espigol-Frigole, G. et al. Increased IL-17A expression in temporal artery lesions is a predictor of sustained response to glucocorticoid treatment in patients with giant-cell arteritis. Ann. Rheum. Dis. 72, 1481–1487 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Fogal, B. et al. Neutralizing IL-6 reduces human arterial allograft rejection by allowing emergence of CD161+ CD4+ regulatory T cells. J. Immunol. 187, 6268–6280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Issa, F., Chandrasekharan, D. & Wood, K. J. Regulatory T cells as modulators of chronic allograft dysfunction. Curr. Opin. Immunol. 23, 648–654 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Mohan, S. V., Liao, Y. J., Kim, J. W., Goronzy, J. J. & Weyand, C. M. Giant cell arteritis: immune and vascular aging as disease risk factors. Arthritis Res. Ther. 13, 231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Weyand, C. M., Younge, B. R. & Goronzy, J. J. IFN-γ and IL-17: the two faces of T-cell pathology in giant cell arteritis. Curr. Opin. Rheumatol. 23, 43–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Loock, J. et al. Treatment of refractory giant cell arteritis with cyclophosphamide:a retrospective analysis of 35 patients from three centres. Clin. Exp. Rheumatol. 30, S70–S76 (2012).

    PubMed  Google Scholar 

  64. Unizony, S. et al. Tocilizumab for the treatment of large-vessel vasculitis (giant cell arteritis, Takayasu arteritis) and polymyalgia rheumatica. Arthritis Care Res. (Hoboken) 64, 1720–1729 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Xenitidis, T., Horger, M., Zeh, G., Kanz, L. & Henes, J. C. Sustained inflammation of the aortic wall despite tocilizumab treatment in two cases of Takayasu arteritis. Rheumatology (Oxford) 52, 1729–1731 (2013).

    Article  CAS  Google Scholar 

  66. Evans, J. M., O'Fallon, W. M. & Hunder, G. G. Increased incidence of aortic aneurysm and dissection in giant cell (temporal) arteritis. A population-based study. Ann. Intern. Med. 122, 502–507 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Weyand, C. M., Liao, Y. J. & Goronzy, J. J. The immunopathology of giant cell arteritis: diagnostic and therapeutic implications. J. Neuroophthalmol. 32, 259–265 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Brack, A. et al. Glucocorticoid-mediated repression of cytokine gene transcription in human arteritis-SCID chimeras. J. Clin. Invest. 99, 2842–2850 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pober, J. S. & Tellides, G. Participation of blood vessel cells in human adaptive immune responses. Trends Immunol. 33, 49–57 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Min, W. & Pober, J. S. AIP1 in graft arteriosclerosis. Trends Cardiovasc. Med. 21, 229–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Choi, J., Enis, D. R., Koh, K. P., Shiao, S. L. & Pober, J. S. T lymphocyte-endothelial cell interactions. Annu. Rev. Immunol. 22, 683–709 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Tellides, G. & Pober, J. S. Interferon-gamma axis in graft arteriosclerosis. Circ. Res. 100, 622–632 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. MacMicking, J. D. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat. Rev. Immunol. 12, 367–382 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, S. Y. et al. Inborn errors of interferon (IFN)-mediated immunity in humans: insights into the respective roles of IFN-α/β, IFN-γ, and IFN-λ in host defense. Immunol. Rev. 226, 29–40 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. van Boxel-Dezaire, A. H. & Stark, G. R. Cell type-specific signaling in response to interferon-γ. Curr. Top. Microbiol. Immunol. 316, 119–154 (2007).

    CAS  PubMed  Google Scholar 

  76. Lee, Y. K., Mukasa, R., Hatton, R. D. & Weaver, C. T. Developmental plasticity of Th17 and Treg cells. Curr. Opin. Immunol. 21, 274–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Yu, L. et al. AIP1 prevents graft arteriosclerosis by inhibiting interferon-γ-dependent smooth muscle cell proliferation and intimal expansion. Circ. Res. 109, 418–427 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaiser, M., Weyand, C. M., Bjornsson, J. & Goronzy, J. J. Platelet-derived growth factor, intimal hyperplasia, and ischemic complications in giant cell arteritis. Arthritis Rheum. 41, 623–633 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Kaiser, M., Younge, B., Bjornsson, J., Goronzy, J. J. & Weyand, C. M. Formation of new vasa vasorum in vasculitis. Production of angiogenic cytokines by multinucleated giant cells. Am. J. Pathol. 155, 765–774 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ahmad, U. et al. IFN-gamma primes intact human coronary arteries and cultured coronary smooth muscle cells to double-stranded RNA- and self-RNA-induced inflammatory responses by upregulating TLR3 and melanoma differentiation-associated gene 5. J. Immunol. 185, 1283–1294 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eid, R. E. et al. Interleukin-17 and interferon-γ are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 119, 1424–1432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Petursdottir, V., Nordborg, E. & Nordborg, C. Atrophy of the aortic media in giant cell arteritis. APMIS 104, 191–198 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Bai, Y. et al. Interferon-gamma induces X-linked inhibitor of apoptosis-associated factor-1 and Noxa expression and potentiates human vascular smooth muscle cell apoptosis by STAT3 activation. J. Biol. Chem. 283, 6832–6842 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Lacotte, S., Brun, S., Muller, S. & Dumortier, H. CXCR3, inflammation, and autoimmune diseases. Ann. NY Acad. Sci. 1173, 310–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Ciccia, F. et al. IL-33 is overexpressed in the inflamed arteries of patients with giant cell arteritis. Ann. Rheum. Dis. 72, 258–264 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Ciccia, F. et al. Expression of interleukin-32 in the inflamed arteries of patients with giant cell arteritis. Arthritis Rheum. 63, 2097–2104 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Nizzoli, G. et al. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. Blood 122, 932–942 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Makkuni, D. et al. Is intimal hyperplasia a marker of neuro-ophthalmic complications of giant cell arteritis? Rheumatology (Oxford) 47, 488–490 (2008).

    Article  CAS  Google Scholar 

  89. Salvarani, C. et al. Risk factors for visual loss in an Italian population-based cohort of patients with giant cell arteritis. Arthritis Rheum. 53, 293–297 (2005).

    Article  PubMed  Google Scholar 

  90. Gonzalez-Gay, M. A. et al. Visual manifestations of giant cell arteritis. Trends and clinical spectrum in 161 patients. Medicine (Baltimore) 79, 283–292 (2000).

    Article  CAS  Google Scholar 

  91. Singh, A. G. et al. Visual manifestations in giant cell arteritis: trend over five decades. Arthritis Rheum. 64, S993 (2012).

    Article  CAS  Google Scholar 

  92. Khokha, R., Murthy, A. & Weiss, A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat. Rev. Immunol. 13, 649–665 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Enzerink, A. & Vaheri, A. Fibroblast activation in vascular inflammation. J. Thromb. Haemost. 9, 619–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. O'Shea, J. J., Ma, A. & Lipsky, P. Cytokines and autoimmunity. Nat. Rev. Immunol. 2, 37–45 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Hoffman, G. S. et al. Infliximab for maintenance of glucocorticosteroid-induced remission of giant cell arteritis: a randomized trial. Ann. Intern. Med. 146, 621–630 (2007).

    Article  PubMed  Google Scholar 

  96. Kotter, I., Henes, J. C., Wagner, A. D., Loock, J. & Gross, W. L. Does glucocorticosteroid-resistant large-vessel vasculitis (giant cell arteritis and Takayasu arteritis) exist and how can remission be achieved? A critical review of the literature. Clin. Exp. Rheumatol. 30, S114–129 (2012).

    PubMed  Google Scholar 

  97. Adizie, T., Christidis, D., Dharmapaliah, C., Borg, F. & Dasgupta, B. Efficacy and tolerability of leflunomide in difficult-to-treat polymyalgia rheumatica and giant cell arteritis: a case series. Int. J. Clin. Pract. 66, 906–909 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Lie, J. T. Illustrated histopathologic classification criteria for selected vasculitis syndromes. American College of Rheumatology Subcommittee on Classification of Vasculitis. Arthritis Rheum. 33, 1074–1087 (1990).

    CAS  Google Scholar 

  99. Klein, R. G., Hunder, G. G., Stanson, A. W. & Sheps, S. G. Large artery involvement in giant cell (temporal) arteritis. Ann. Intern. Med. 83, 806–812 (1975).

    Article  CAS  PubMed  Google Scholar 

  100. Han, J. W. et al. Vessel wall-embedded dendritic cells induce T-cell autoreactivity and initiate vascular inflammation. Circ. Res. 102, 546–553 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Agrawal, A., Sridharan, A., Prakash, S. & Agrawal, H. Dendritic cells and aging: consequences for autoimmunity. Expert Rev. Clin. Immunol. 8, 73–80 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shaw, A. C. et al. Dysregulation of human Toll-like receptor function in aging. Ageing Res. Rev. 10, 346–353 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Shaw, A. C., Joshi, S., Greenwood, H., Panda, A. & Lord, J. M. Aging of the innate immune system. Curr. Opin. Immunol. 22, 507–513 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Barone, F., Nayar, S. & Buckley, C. D. The role of non-hematopoietic stromal cells in the persistence of inflammation. Front. Immunol. 3, 416 (2012).

    PubMed  Google Scholar 

  105. Roozendaal, R. & Mebius, R. E. Stromal cell-immune cell interactions. Annu. Rev. Immunol. 29, 23–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Piggott, K. et al. Blocking the NOTCH pathway inhibits vascular inflammation in large-vessel vasculitis. Circulation 123, 309–318 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Tzoneva, G. & Ferrando, A. A. Recent advances on NOTCH signaling in T-ALL. Curr. Top. Microbiol. Immunol. 360, 163–182 (2012).

    CAS  PubMed  Google Scholar 

  109. Boucher, J., Gridley, T. & Liaw, L. Molecular pathways of notch signaling in vascular smooth muscle cells. Front. Physiol. 3, 81 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yang, K. & Proweller, A. Vascular smooth muscle Notch signals regulate endothelial cell sensitivity to angiogenic stimulation. J. Biol. Chem. 286, 13741–13753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Koyanagi, A., Sekine, C. & Yagita, H. Expression of Notch receptors and ligands on immature and mature T cells. Biochem. Biophys. Res. Commun. 418, 799–805 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Van de Walle, I. et al. Specific Notch receptor-ligand interactions control human TCR-αβ/γδ development by inducing differential Notch signal strength. J. Exp. Med. 210, 683–697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ilarregui, J. M. et al. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat. Immunol. 10, 981–991 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Svensson, M., Maroof, A., Ato, M. & Kaye, P. M. Stromal cells direct local differentiation of regulatory dendritic cells. Immunity. 21, 805–816 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Huang, Y. et al. Kidney-derived stromal cells modulate dendritic and T cell responses. J. Am. Soc. Nephrol. 20, 831–841 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li, Q., Guo, Z., Xu, X., Xia, S. & Cao, X. Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation. Eur. J. Immunol. 38, 2751–2761 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, M. et al. Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat. Immunol. 5, 1124–1133 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Xiao, J. et al. Syndecan-1 displays a protective role in aortic aneurysm formation by modulating T cell-mediated responses. Arterioscler. Thromb. Vasc. Biol. 32, 386–396 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7, 803–815 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Régent, A. et al. Identification of target antigens of anti-endothelial cell and anti-vascular smooth muscle cell antibodies in patients with giant cell arteritis: a proteomic approach. Arthritis Res. Ther. 13, R107 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Dimitrijevic, I., Andersson, C., Rissler, P. & Edvinsson, L. Increased tissue endothelin-1 and endothelin-B receptor expression in temporal arteries from patients with giant cell arteritis. Ophthalmology 117, 628–636 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from grants from the NIH (R01 EY011916, P01 HL058000, U19 AI057266 and U19 AI090019) and the Govenar Discovery Fund (C. M. Weyand).

Author information

Authors and Affiliations

Authors

Contributions

Both authors made equal contributions to all aspects of this manuscript.

Corresponding author

Correspondence to Cornelia M. Weyand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weyand, C., Goronzy, J. Immune mechanisms in medium and large-vessel vasculitis. Nat Rev Rheumatol 9, 731–740 (2013). https://doi.org/10.1038/nrrheum.2013.161

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing