Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in laparoscopic surgery in urology

Key Points

  • Robot-assisted surgery has revolutionized laparoscopy, particularly enabling surgeons with no laparoscopic training to learn and perform reconstructive procedures with a shortened learning curve

  • Laparoscopic surgery will benefit from new developments, such as 4K ultrahigh-definition and 3D high-definition video technology, flexible instruments, suturing devices, and sealing devices using bipolar and ultrasound technology

  • Sophisticated camera holders and ergonomic platforms, enabling the surgeon to perform the procedure in a sitting position or with arm and chest support, will further benefit laparoscopic surgery

  • The use of specific platforms for single-site surgery might increase the application of laparoendoscopic single-site surgery for urological indications

  • Laparoscopy remains an important surgical technique, particularly for ablative procedures

  • Distribution of robot-assisted surgery is limited by high purchase and maintenance costs for the only existing robotic system, but new robots are expected soon

Abstract

In the past 10 years, laparoscopy has been challenged by robotic surgery; nevertheless, laparoscopic techniques are subject to continuous change. Ultrahigh definition is the next development in video technology, it delivers fourfold more detail than full high definition resulting in improved fine detail, increased texture, and an almost photographic emulsion of smoothness of the image. New 4K ultrahigh-definition technology might remove the current need for the use of polarized glasses. New devices for laparoscopy include advanced sealing devices, instruments with six degrees of freedom, ergonomic platforms with armrests and a chest support, and camera holders. A manually manipulated robot-like device is still at the experimental stage. Robot-assisted surgery has substantially revolutionized laparoscopy, increasing its distribution; however, robot-assisted surgery is associated with considerable costs. All technical improvements of laparoscopic surgery are extremely valuable to further simplify the use of classical laparoscopy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of a generic trocar and canula.
Figure 2: Illustration of endoscopic suturing devices.
Figure 3: Basic camera-holder designs.

Similar content being viewed by others

References

  1. Rassweiler, J., Binder, J. & Frede, T. Robotic and telesurgery: will they change our future? Curr. Opin. Urol. 11, 309–320 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Albisinni, S. et al. Long-term analysis of oncologic outcomes after laparosopic radical cystectomy in Europe: results from a multicentric study of EAU-section of Uro-Technology. BJU Int. 115, 937–945 (2015).

    Article  PubMed  Google Scholar 

  3. Lusch, A. et al. Comparison of optics and performance of distal sensor high definition cystoscope, a distal sensor standard definition cystoscope, and a fiberoptic cystoscope. Urology 85, 268–272 (2015).

    Article  PubMed  Google Scholar 

  4. Schurr, M. O., Kunert, W., Arezzo, A. & Buess, G. The role and future of endoscopic imaging systems. Endoscopy 71, 557–562 (1999).

    Article  Google Scholar 

  5. TrueVision, Microsurgery Teaching System. [online]

  6. Acharya, S. Ultra high definition televsion: threshold of a new age. ITU [online], (2012).

    Google Scholar 

  7. Bach, T. et al. Technical solutiona to improve the management of non-invasive transitional cell carcinoma: summary of European Association of Urology Section of Uro-Technology (ESUT) and Section for Uro-Oncology (ESOU) expert meeting and current and future perspectives. BJU Int. 115, 14–23 (2015).

    Article  PubMed  Google Scholar 

  8. Rassweiler, J. & Frede, T. Robotics, telesurgery and telementoring — their position in modern urological laparoscopy. Arch. Esp. Urol. 55, 610–628 (2002).

    PubMed  Google Scholar 

  9. Breedveld, P., Stassen, H. G., Meijer, D. W. & Stassen, L. P. S. Theoretical background and conceptual solution for depth perception and eye-hand coordination problems in laparoscopic surgery. Minim. Invasive Ther. Allied Technol. 8, 227–234 (1999).

    Article  Google Scholar 

  10. Rassweiler, J., Gözen, A. S., Frede, T., Teber, D. in Robotics in Genitourinary Surgery (eds Hemal, A. K. & Menon, M.) 63–78 (Springer, 2011).

    Book  Google Scholar 

  11. Izquierido, L. et al. Recent advances in natural orifice transluminal endoscopic surgery in urologic surgery. Int. J. Urol. 20, 462–466 (2013).

    Article  Google Scholar 

  12. McDougall, E. M. et al. Comparison of three-dimensional and two-dimensional laparoscopic video systems. J. Endourol. 10, 371–374 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Cicione, A. et al. Three-dimensional versus standard laparoscopy: comparative assessment using a validated program for laparoscopic skills. Urology 82, 1444–1450 (2013).

    Article  PubMed  Google Scholar 

  14. Neudecker, J. et al. The European Association for Surgery Clinical Practice Guideline on the pneumoperitoneum for laparoscopic surgery. Surg. Endosc. 16, 1121–1143 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Wind, J. et al. Medical liability insurance claims on entry-related complications in laparoscopy. Surg. Endosc. 21, 2094–2099 (2007).

    Article  PubMed  Google Scholar 

  16. Vilos, G. A., Ternamian, A., Dempter, J. & Laberge, P. Y. Laparoscopic entry: a review of techniques, technologies, and complications. J. Obstet. Gynaecol. Can. 29, 433–447 (2007).

    Article  PubMed  Google Scholar 

  17. Krishnakumar, S. & Tambe, P. Entry complications in laparoscopic surgery. J. Gynecol. Endosc. Surg. 1, 4–11 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shafer, D. M., Khajanchee, Y., Wong, J. & Swanström, L. L. Comparison of five different abdominal access trocar systems: analysis of insertion force, removal force, and defect size. Surg. Innov. 13, 183–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Feste, J. R., Bojahr, B. & Turner, D. J. Randomized trial comparing a radially expandable needle system with cutting trocars. JSLS 4, 11–15 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Venkatesh, R. et al. Prospective randomized comparison of cutting and dilating disposable trocars for access during laparoscopic renal surgery. JSLS 11, 198–203 (2007).

    PubMed  PubMed Central  Google Scholar 

  21. Antoniou, S. A., Antoniou, G. A., Koch, O. O., Pointner, R. & Granderath, F. A. Blunt versus bladed trocars in laparoscopic surgery: a systematic review and meta-analysis of randomized trials. Surg. Endosc. 27, 2312–2320 (2013).

    Article  PubMed  Google Scholar 

  22. McKernan, J. & Finley, C. Experience with optical trocar in performing laparoscopic procedures. Surg. Laparosc. Endosc. 12, 96–99 (2002).

    Article  Google Scholar 

  23. Glass, K. B., Tarnay, C. M. & Munro, M. G. Intraabdominal pressure and incision parameters associated with a pyramidal laparoscopic trocar-cannula system and the EndoTIP cannula. J. Am. Assoc. Gynecol. Laparosc. 9, 508–513 (2002).

    Article  PubMed  Google Scholar 

  24. Herati, A. S. et al. Use of the valveless trocar system reduces carbon dioxide absorption during laparoscopy when compared with standard trocars. Urology 77, 1126–1132 (2011).

    Article  PubMed  Google Scholar 

  25. Nepple, K. G., Kallogjeri, D. & Bhayani, S. B. Benchtop evaluation of pressure barrier insufflator and standard insufflator systems. Surg. Endosc. 27, 333–338 (2013).

    Article  PubMed  Google Scholar 

  26. Horstmann, M., Horton, K., Kurz, M., Padevit, C. & John, M. Prospective comparison between the AirSeal® System valve-less trocar and a standard VersaportPlus V2 trocar in robotic-assisted radical prostatectomy. J. Endourol. 27, 579–582 (2013).

    Article  PubMed  Google Scholar 

  27. Solaini, L. et al. Advanced sealing and dissecting devices in laparoscopic adrenal surgery. JSLS 17, 622–626 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fagotti, A. et al. Randomized study comparing use of THUNDERBEAT versus standard electrosurgery during laparoscopic radical hysterectomy and pelvic lymphadenectomy for gynecologic cancer. J. Minim. Invasive Gynecol. 21, 447–453 (2014).

    Article  PubMed  Google Scholar 

  29. Vilos, G. & Rajakumar, C. Electrosurgical generators and monopolar and bipolar electrosurgery. J. Minim. Invasive Gynecol. 20, 279–287 (2013).

    Article  PubMed  Google Scholar 

  30. Gözen, A. S., Teber, D. & Rassweiler, J. Principles and initial experience of a new device for dissection and hemostasis. Minim. Invasive Ther. Allied Technol. 16, 58–65 (2007).

    Article  PubMed  Google Scholar 

  31. Frede, T. et al. Geometry of laparoscopic suturing and knotting techniques. J. Endourol. 13, 191–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Rassweiler, J., Frede, T., Teber, D. & van Velthoven, R. Laparoscopic radical cystectomy with and without orthotopic bladder replacement. Minim. Invasive Ther. Allied Technol. 14, 78–95 (2005).

    Article  PubMed  Google Scholar 

  33. Collins, J. W. & Wiklund, N. P. Totally intracorporeal robot-assisted radical cystectomy: optimizing total outcomes. BJU Int. 114, 326–333 (2014).

    PubMed  Google Scholar 

  34. Tajima, M. et al. Safety and effectiveness of mechanical versus hand suturing of intestinal anastomoses in an animal model of peritonitis. Exp. Ther. Med. 4, 211–215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wagner, A. et al. Totally laparoscopic creation of a novel stapled orthotopic neobladder in the porcine model. J. Endourol. 22, 151–156 (2008).

    Article  PubMed  Google Scholar 

  36. Yoshikawa, T. et al. Laparoscopic esophagojejunostomy using the EndoStitch and a circular stapler under direct view created by the ENDOCAMELEON. Gastric Cancer 16, 609–614 (2013).

    Article  PubMed  Google Scholar 

  37. Rassweiler, J., Sentker, L., Seemann, O., Hatzinger, M. & Rumpelt, J. Laparoscopic radical prostatectomy with the Heilbronn technique: an analysis of the first 180 cases. J. Urol. 160, 201–208 (2001).

    Google Scholar 

  38. Pattaras, J. G., Smith, G. S., Landman, J. & Moore, R. G. Comparison and analysis of laparoscopic intracorporeal suturing devices: preliminary results. J. Endourol. 15, 187–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Göpel, T., Härtl, F., Schneider, A., Buss, M. & Feussner, H. Automation of a suturing device for minimally invasive surgery. Surg. Endosc. 25, 2100–2104 (2011).

    Article  PubMed  Google Scholar 

  40. Hart, S. The benefits of automated suturing devices in gynecologic endoscopic surgeries: the Endo Stitch and SILS Stitch. Surg. Technol. Int. 22, 159–164 (2012).

    PubMed  Google Scholar 

  41. Chi, T., Eisner, B. H., Berger, A. D. & Stoller, M. An ex-vivo evaluation of the application and strength of a novel laparoscopic knot substitute device. J. Endourol. 24, 95–98 (2010).

    Article  PubMed  Google Scholar 

  42. Madan, A. K. et al. Evaluation of specialized laparoscopic suturing devices. JSLS 8, 191–193 (2004).

    PubMed  PubMed Central  Google Scholar 

  43. Jernigan, S. A laparoscopic knot-tying device for minimally invasive cardiac surgery. Eur. J. Cardiothorac. Surg. 37, 626–630 (2010).

    Article  PubMed  Google Scholar 

  44. Lee, C. Y., Sauer, J. S., Gorea, H. R., Martellaro, A. J. & Knight, P. A. Comparison of strength, consistency, and speed of COR-KNOT versus manually hand-tied knots in an ex vivo minimally invasive model. Innovations 9, 111–116 (2014).

    Article  PubMed  Google Scholar 

  45. Winder, J. S. & Pauli, E. M. Comprehensive management of full-thickness luminal defects: the next frontier of gastrointestinal endoscopy. World J. Gastrointest. Endosc. 10, 758–768 (2015).

    Article  Google Scholar 

  46. Stowers, S. & Wright, R. A. Case study: surgeons surpass 500 cases using market's first curved needle suturing device. EndoEvolution [online], (2015).

    Google Scholar 

  47. Zondervan, P. J. et al. Partial nephrectomy: is there an advantage of self-retaining suture in the perioperative period? A matched case-control comparison. World J. Urol. 30, 659–664 (2012).

    Article  PubMed  Google Scholar 

  48. Greenberg, J. A. & Goldman, R. H. Barbed suture: a review of the technology and clinical uses in obstetrics and gynecology. Rev. Obstet. Gynecol. 6, 110–115 (2013).

    Google Scholar 

  49. Gözen, A. S., Tokas, T., Akin, Y., Klein, J. & Rassweiler, J. Impact of barbed suture in controlling the dorsal vein complex during laparosopic radical prostatectomy. Minim. Invasive Ther. Allied Technol. 27, 1–6 (2014).

    Google Scholar 

  50. Hart, S. & Sobolewski, C. J. The benefits using barbed sutures with automated suturing devices in gynecologic endoscopic surgeries. Surg. Technol. Int. 23, 161–165 (2013).

    PubMed  Google Scholar 

  51. Brehmer, B. et al. Endosew: new device for laparoscopic running sutures. J. Endourol. 22, 307–311 (2008).

    Article  PubMed  Google Scholar 

  52. Roth, B., Birkhäuser, F. D., Thalmann, G. N. & Zehnder, P. Novel prototype sewing device, EndoSewR, for minimally invasive surgery: an extracorporeal construction pilot study in 10 patients. BJU Int. 112, 959–964 (2012).

    Google Scholar 

  53. Frede, T. et al. The Radius Surgical System — a new device for complex minimally invasive procedures in urology? Eur. Urol. 51, 1015–1022 (2007).

    Article  PubMed  Google Scholar 

  54. Tokas, T., Gözen, A. S., Tschada, A. & Rassweiler, J. A laparoscopic combination with comparable ergonomic results to robotic surgery, tested in an experimental laparoscopic radical prostatectomy setting [abstract PD18-11]. J. Urol. 193, e390 (2015).

    Article  Google Scholar 

  55. White, W. M. et al. Single-port laparoscopic abdominal sacral colpopexy: initial experience and comparative outcomes. Urology 74, 1008–1012 (2009).

    Article  PubMed  Google Scholar 

  56. Janetschek, G. Robotics: will they give a kick to single-site surgery. Eur. Urol. 66, 1044–1045 (2014).

    Article  PubMed  Google Scholar 

  57. Albayrak, A. et al. A newly designed ergonomic body support for surgeons. Surg. Endosc. 21, 1835–1840 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Rassweiler, J. J. et al. A new platform improving the ergonomics of laparoscopic surgery: initial clinical evaluation of the prototype. Eur. Urol. 61, 226–229 (2012).

    Article  PubMed  Google Scholar 

  59. Gözen, A. S. et al. Comparison of operating positions and ETHOS surgical platform for laparoscopic pelvic surgery simulation. J. Endourol. 29, 95–99 (2015).

    Article  PubMed  Google Scholar 

  60. Jaspers, J. E. N., Bentala, M., Herder, J. L., De Mol, B. A. & Grimbergen, C. A. Mechanical manipulator for intuitive control of endoscopic instruments with seven degrees of freedom. Minim. Invasive Ther. Allied Technol. 13, 191–198 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Buess, G. F. et al. A new remote-controlled endoscope positioning system for endoscopic solo surgery. Surg. Endosc. 14, 417–418 (2000).

    Article  Google Scholar 

  62. Kavoussi, L. R., Moore, R. G., Adams, J. B. & Partin, A. W. Comparison of robotic versus human laparoscopic camera control. J. Urol. 154, 2134–2136 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Rassweiler, J. et al. Telesurgery (eds Kumar, S. & Marescaux, J.) 67–89 (Springer, 2008).

    Book  Google Scholar 

  64. Janetschek, G., Bartsch, G. & Kavoussi, L. R. Transcontinental interactive laparoscopic telesurgery between the United States and Europe. J. Urol. 160, 1413–1415 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. den Boer, K. T. et al. Time-action analysis of instrument positioners in laparoscopic cholecystectomy. Surg. Endosc. 16, 142–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Wagner, A. A., Varkarakis, M., Link, R. E., Sullivan, W. & Su, L.-M. Comparison of surgical performance during laparoscopic radical prostatectomy of two robotic camera holders; EndoAssist and AESOP: a pilot study. Urology 68, 70–74 (2006).

    Article  PubMed  Google Scholar 

  67. Polet, R. & Donnez, J. Gynecologic laparoscopic surgery with a palm-controlled laparoscopic holder. J. Am. Assoc. Gynecol. Laparosc. 11, 73–78 (2004).

    Article  PubMed  Google Scholar 

  68. Hung, A. J. et al. Robotic transrectal ultrasonography during robot-assisted radical prostatectomy. Eur. Urol. 62, 341–348 (2012).

    Article  PubMed  Google Scholar 

  69. Gillen, S. et al. Solo-surgical laparoscopic cholecystectomy with a joystick-guided camera device: a case–control study. Surg. Endosc. 28, 164–170 (2014).

    Article  PubMed  Google Scholar 

  70. Jaspers, J. E., Den Boer, K. T., Sjoerdsma, W., Bruijn, M., Grimbergen, C. A. Design and feasibility of PASSIST, a passive instrument positioner. J. Laparoendosc. Adv. Surg. Tech. A 10, 331–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Micali, S. et al. New trends in minimally invasive urologic surgery: what is beyond the robot? World J. Urol. 31, 505–513 (2013).

    Article  PubMed  Google Scholar 

  72. Pini, G. & Rassweiler, J. Minilaparoscopy and laparoendoscopic single-site surgery: mini- and single-scar in urology. Minim. Invasive Ther. Allied Technol. 21, 8–25 (2012).

    Article  PubMed  Google Scholar 

  73. Rassweiler, J. et al. Role of laparoscopy in reconstructive surgery. Curr. Opin. Urol. 20, 471–482 (2012).

    Article  Google Scholar 

  74. Pini, G. et al. Small-incision access retroperitoneoscopic technique (SMART) pyeloplasty in adult patients: comparison of cosmetic and postoperative pain outcomes in a matched-pair analysis with standard retroperitoneoscopic pyeloplasty: preliminary report. World J. Urol. 30, 605–611 (2012).

    Article  PubMed  Google Scholar 

  75. Porpiglia, F. et al. Contemporary urologic minilaparoscopy: indications, techniques and surgical outcomes in a multi-institutional European cohort. J. Endourol. 28, 951–957 (2014).

    Article  PubMed  Google Scholar 

  76. Georgiu, A. N. et al. Evolution and simplified terminology of natural orifice transluminal endoscopic surgery (NOTES), laparoendoscopic single-site surgery (LESS), and mini-laparoscopy. World J. Urol. 30, 573–580 (2012).

    Article  Google Scholar 

  77. Irvin, B. H., Rao, P. P., Stein, R. J. & Desai, M. M. Laparoendoscopic single site surgery in urology. Urol. Clin. North Am. 36, 223–235 (2009).

    Article  Google Scholar 

  78. Dapri, G. Access devices for single-port laparoscopic surgery. EAES [online], (2015).

    Google Scholar 

  79. Haber, G. P. et al. Spider surgical system for urologic procedures with laparoendoscopic single-site surgery from initial laboratory experience to first clinical application. Eur. Urol. 61, 415–422 (2012).

    Article  PubMed  Google Scholar 

  80. Petroni, G. et al. A novel robotic system for single-port laparoscopic surgery: preliminary experience. Surg. Endosc. 27, 1032–1937 (2013).

    Google Scholar 

  81. Can, S. et al. The mechatronic support system 'HVSPS' and the way to NOTES. Minim. Invasive Ther. Allied Technol. 17, 341–345 (2008).

    Article  PubMed  Google Scholar 

  82. Herrell, S.D., Webster, R. & Simaan, N. Future robotic platforms in urologic surgery: recent developments. Curr. Opin. Urol. 24, 118–126 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wortman, T. D., Mondry, J. M., Farritor, S. M. & Oleynikov, D. Single-site colectomy with miniature in vivo robotic platform. IEEE Trans. Biomed. Eng. 60, 926–929 (2013).

    Article  PubMed  Google Scholar 

  84. Kaouk, J. H. et al. A novel robotic system for single-port urologic surgery: first clinical investigation. Eur. Urol. 66, 1033–1043 (2014).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the manuscript, discussed the content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jens J. Rassweiler.

Ethics declarations

Competing interests

J.J.R. was involved in the development of the ETHOS chair but did not receive any financial compensation or support for his involvement. Karl Storz (Germany) supports the laparoscopic training centre of the Department of Urology, SLK Kliniken Heilbronn, Germany. D.T. has nothing to disclose.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rassweiler, J., Teber, D. Advances in laparoscopic surgery in urology. Nat Rev Urol 13, 387–399 (2016). https://doi.org/10.1038/nrurol.2016.70

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2016.70

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing