Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure-function analyses of the human SIX1–EYA2 complex reveal insights into metastasis and BOR syndrome

Abstract

SIX1 interacts with EYA to form a bipartite transcription factor essential for mammalian development. Loss of function of this complex causes branchio-oto-renal (BOR) syndrome, whereas re-expression of SIX1 or EYA promotes metastasis. Here we describe the 2.0-Å structure of SIX1 bound to EYA2, which suggests a new DNA-binding mechanism for SIX1 and provides a rationale for the effect of BOR syndrome mutations. The structure also reveals that SIX1 uses predominantly a single helix to interact with EYA. Substitution of a single amino acid in this helix is sufficient to disrupt SIX1-EYA interaction, SIX1-mediated epithelial-mesenchymal transition and metastasis in mouse models. Given that SIX1 and EYA are overexpressed in many tumor types, our data indicate that targeting the SIX1–EYA complex may be a potent approach to inhibit tumor progression in multiple cancer types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the MBP-SIX1–EYA2ED complex supports a new DNA-binding mechanism for SIX1.
Figure 2: Interacting surfaces of human SIX1 and EYA2ED.
Figure 3: Mapping BOR mutations on EYA2ED and SIX1.
Figure 4: Disruption of the SIX1–EYA transcriptional complex inhibits SIX1-mediated TGF-β signaling and characteristics of EMT.
Figure 5: Disruption of the SIX1–EYA transcriptional complex inhibits SIX1-mediated metastasis.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Christensen, K.L., Patrick, A.N., McCoy, E.L. & Ford, H.L. The six family of homeobox genes in development and cancer. Adv. Cancer Res. 101, 93–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Kawakami, K., Sato, S., Ozaki, H. & Ikeda, K. Six family genes—structure and function as transcription factors and their roles in development. Bioessays 22, 616–626 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Rebay, I., Silver, S.J. & Tootle, T.L. New vision from Eyes absent: transcription factors as enzymes. Trends Genet. 21, 163–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Li, X. et al. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426, 247–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Tootle, T.L. et al. The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature 426, 299–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Rayapureddi, J.P. et al. Eyes absent represents a class of protein tyrosine phosphatases. Nature 426, 295–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Jung, S.-K. et al. Crystal structure of ED-Eya2: insight into dual roles as a protein tyrosine phosphatase and a transcription factor. FASEB J. 24, 560–569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abdelhak, S. et al. A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat. Genet. 15, 157–164 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Ruf, R.G. et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1–SIX1-DNA complexes. Proc. Natl. Acad. Sci. USA 101, 8090–8095 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wayne, S. et al. Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum. Mol. Genet. 10, 195–200 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Y., Knosp, B.M., Maconochie, M., Friedman, R.A. & Smith, R.J.H. A comparative study of Eya1 and Eya4 protein function and its implication in branchio-oto-renal syndrome and DFNA10. J. Assoc. Res. Otolaryngol. 5, 295–304 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schönberger, J. et al. Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat. Genet. 37, 418–422 (2005).

    Article  PubMed  Google Scholar 

  13. Delgado-Olguín, P. et al. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat. Genet. 44, 343–347 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ford, H.L., Kabingu, E.N., Bump, E.A., Mutter, G.L. & Pardee, A.B. Abrogation of the G2 cell cycle checkpoint associated with overexpression of HSIX1: a possible mechanism of breast carcinogenesis. Proc. Natl. Acad. Sci. USA 95, 12608–12613 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu, Y. et al. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat. Med. 10, 175–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Micalizzi, D.S. et al. The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-β signaling. J. Clin. Invest. 119, 2678–2690 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mimae, T. et al. Upregulation of Notch2 and Six1 is associated with progression of early-stage lung adenocarcinoma and a more aggressive phenotype at advanced stages. Clin. Cancer Res. 18, 945–955 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Zheng, X.-H. et al. Expression and clinical implications of homeobox gene Six1 in cervical cancer cell lines and cervical epithelial tissues. Int. J. Gynecol. Cancer 20, 1587–1592 (2010).

    Article  PubMed  Google Scholar 

  19. Ng, K.T. et al. Clinicopathological significance of homeoprotein Six1 in hepatocellular carcinoma. Br. J. Cancer 95, 1050–1055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ono, H. et al. SIX1 promotes epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation. Oncogene 31, 4923–4934 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Behbakht, K. et al. Six1 overexpression in ovarian carcinoma causes resistance to TRAIL-mediated apoptosis and is associated with poor survival. Cancer Res. 67, 3036–3042 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. McCoy, E.L. et al. Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition. J. Clin. Invest. 119, 2663–2677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iwanaga, R. et al. Expression of Six1 in luminal breast cancers predicts poor prognosis and promotes increases in tumor initiating cells by activation of extracellular signal-regulated kinase and transforming growth factor-β signaling pathways. Breast Cancer Res. 14, R100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, C.-A. et al. SIX1 induces lymphangiogenesis and metastasis via upregulation of VEGF-C in mouse models of breast cancer. J. Clin. Invest. 122, 1895–1906 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ng, K.T.P. et al. Suppression of tumorigenesis and metastasis of hepatocellular carcinoma by shRNA interference targeting on homeoprotein Six1. Int. J. Cancer 127, 859–872 (2010).

    CAS  PubMed  Google Scholar 

  26. Darnell, J.E. Transcription factors as targets for cancer therapy. Nat. Rev. Cancer 2, 740–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Li, C.M. et al. Gene expression in Wilms' tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. Am. J. Pathol. 160, 2181–2190 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, Q.-F. et al. MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome. Blood 117, 6895–6905 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miller, S.J. et al. Inhibition of Eyes Absent Homolog 4 expression induces malignant peripheral nerve sheath tumor necrosis. Oncogene 29, 368–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, L. et al. Transcriptional coactivator Drosophila eyes absent homologue 2 is up-regulated in epithelial ovarian cancer and promotes tumor growth. Cancer Res. 65, 925–932 (2005).

    CAS  PubMed  Google Scholar 

  31. Farabaugh, S.M., Micalizzi, D.S., Jedlicka, P., Zhao, R. & Ford, H.L. Eya2 is required to mediate the pro-metastatic functions of Six1 via the induction of TGF-β signaling, epithelial-mesenchymal transition, and cancer stem cell properties. Oncogene 31, 552–562 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Pandey, R.N. et al. The Eyes Absent phosphatase-transactivator proteins promote proliferation, transformation, migration, and invasion of tumor cells. Oncogene 29, 3715–3722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moon, A.F., Mueller, G.A., Zhong, X. & Pedersen, L.C. A synergistic approach to protein crystallization: combination of a fixed-arm carrier with surface entropy reduction. Protein Sci. 19, 901–913 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Ades, S.E. & Sauer, R.T. Specificity of minor-groove and major-groove interactions in a homeodomain-DNA complex. Biochemistry 34, 14601–14608 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Hu, S., Mamedova, A. & Hegde, R.S. DNA-binding and regulation mechanisms of the SIX family of retinal determination proteins. Biochemistry 47, 3586–3594 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Percival-Smith, A., Müller, M., Affolter, M. & Gehring, W.J. The interaction with DNA of wild-type and mutant fushi tarazu homeodomains. EMBO J. 9, 3967–3974 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shang, Z. et al. Design of a 'minimAl' homeodomain: the N-terminal arm modulates DNA binding affinity and stabilizes homeodomain structure. Proc. Natl. Acad. Sci. USA 91, 8373–8377 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, Y. et al. Discovery, optimization and validation of an optimal DNA-binding sequence for the Six1 homeodomain transcription factor. Nucleic Acids Res. 40, 8227–8239 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kawakami, K., Ohto, H., Ikeda, K. & Roeder, R.G. Structure, function and expression of a murine homeobox protein AREC3, a homologue of Drosophila sine oculis gene product, and implication in development. Nucleic Acids Res. 24, 303–310 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harris, S.E., Winchester, C.L. & Johnson, K.J. Functional analysis of the homeodomain protein SIX5. Nucleic Acids Res. 28, 1871–1878 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Patrick, A.N., Schiemann, B.J., Yang, K., Zhao, R. & Ford, H.L. Biochemical and functional characterization of six SIX1 Branchio-oto-renal syndrome mutations. J. Biol. Chem. 284, 20781–20790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kussie, P.H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Sattler, M. et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Vassilev, L.T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Azuma, N., Hirakiyama, A., Inoue, T., Asaka, A. & Yamada, M. Mutations of a human homologue of the Drosophila eyes absent gene (EYA1) detected in patients with congenital cataracts and ocular anterior segment anomalies. Hum. Mol. Genet. 9, 363–366 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Orten, D.J. et al. Branchio-oto-renal syndrome (BOR): novel mutations in the EYA1 gene, and a review of the mutational genetics of BOR. Hum. Mutat. 29, 537–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Krug, P. et al. Mutation screening of the EYA1, SIX1, and SIX5 genes in a large cohort of patients harboring branchio-oto-renal syndrome calls into question the pathogenic role of SIX5 mutations. Hum. Mutat. 32, 183–190 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Bonini, N.M., Bui, Q.T., Gray-Board, G.L. & Warrick, J.M. The Drosophila eyes absent gene directs ectopic eye formation in a pathway conserved between flies and vertebrates. Development 124, 4819–4826 (1997).

    CAS  PubMed  Google Scholar 

  51. Bui, Q.T., Zimmerman, J.E., Liu, H. & Bonini, N.M. Molecular analysis of Drosophila eyes absent mutants reveals features of the conserved Eya domain. Genetics 155, 709–720 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Grifone, R. et al. Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev. Biol. 302, 602–616 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Worth, C.L., Preissner, R. & Blundell, T.L. SDM–a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res. 39, W215–W222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Buller, C., Xu, X., Marquis, V., Schwanke, R. & Xu, P.X. Molecular effects of Eya1 domain mutations causing organ defects in BOR syndrome. Hum. Mol. Genet. 10, 2775–2781 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Mutsuddi, M. et al. Using Drosophila to decipher how mutations associated with human branchio-oto-renal syndrome and optical defects compromise the protein tyrosine phosphatase and transcriptional functions of eyes absent. Genetics 170, 687–695 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rayapureddi, J.P. & Hegde, R.S. Branchio-oto-renal syndrome associated mutations in Eyes Absent 1 result in loss of phosphatase activity. FEBS Lett. 580, 3853–3859 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Ikeda, K., Watanabe, Y., Ohto, H. & Kawakami, K. Molecular interaction and synergistic activation of a promoter by Six, Eya, and Dach proteins mediated through CREB binding protein. Mol. Cell Biol. 22, 6759–6766 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wrana, J.L. et al. TGF β signals through a heteromeric protein kinase receptor complex. Cell 71, 1003–1014 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Drasin, D.J., Robin, T.P. & Ford, H.L. Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity. Breast Cancer Res. 13, 226 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859–866 (2006).

    Article  PubMed  Google Scholar 

  61. Sheldrick, G.M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D Biol. Crystallogr. 66, 479–485 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Otwinowski, Z. Maximum likelihood refinement of heavy atom parameters. in Isomorphous Replacement and Anomalous Scattering (eds. Evans, P. & Leslie, A.) 80–85 (SERC Daresbury Laboratory, 1991).

  63. Cowtan, K. dm': An automated procedure for phase improvement by density modification. Joint CCP4 ESF-EACBM Newsl. Protein Crystallogr. 31, 34–38 (1994).

    Google Scholar 

  64. Cohen, S.X. et al. Towards complete validated models in the next generation of ARP/wARP. Acta Crystallogr. D Biol. Crystallogr. 60, 2222–2229 (2004).

    Article  PubMed  Google Scholar 

  65. Adams, P.D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Ford, H.L. et al. Cell cycle-regulated phosphorylation of the human SIX1 homeodomain protein. J. Biol. Chem. 275, 22245–22254 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Rhodes, D.R. et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Churchill, D. Micalizzi and W. Lilyestrom for critical reading of the manuscript as well as members of the Ford and Zhao laboratories for their help and suggestions. We would like to thank the University of Colorado AMC Biomolecular X-ray Crystallography Core; the Biostatistics and Bioinformatics Shared Resource of The University of Colorado Comprehensive Cancer Center (P30CA046934) for access to databases through Oncomine; the Advanced Light Source beam line 4.2.2 at Berkeley and J. Nix for help with earlier data collection. This work was supported by grants from the US National Cancer Institute (2R01-CA095277 and R01CA157790) to H.L.F. and from the US Department of Defense Synergistic IDEA award (W81XWH-09-1-0253), Breast Cancer Research Foundation–American Association for Cancer Research, State of Colorado (2009 and 2011) and US National Institutes of Health (R03DA030559 and R03DA033174) to H.L.F. and R.Z. A.N.P. was supported by a Pediatric Hematology/Oncology Postdoctoral Fellowship (2T32082086-11A1). Data in this paper were collected at Argonne National Laboratory, Structural Biology Center at the Advanced Photon Source operated by University of Chicago Argonne, LLC, for the US Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

A.N.P. performed the structural and biochemical experiments. J.H.C. performed the cell culture and animal experiments. A.L.S. performed the bioinformatic analyses. R.Z. and X.S.C. designed and supervised the structural and biochemical experiments. H.L.F. designed and supervised the cell culture and animal experiments. A.N.P., R.Z. and H.L.F. designed and conceived of the overall experimental design throughout the manuscript and together wrote the manuscript. All authors participated in the preparation of the manuscript.

Corresponding authors

Correspondence to Heide L Ford or Rui Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 3685 kb)

Data set

Supplementary Table 1 (XLSX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patrick, A., Cabrera, J., Smith, A. et al. Structure-function analyses of the human SIX1–EYA2 complex reveal insights into metastasis and BOR syndrome. Nat Struct Mol Biol 20, 447–453 (2013). https://doi.org/10.1038/nsmb.2505

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2505

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer