Elsevier

Seminars in Perinatology

Volume 33, Issue 4, August 2009, Pages 251-258
Seminars in Perinatology

Diagnostic Pitfalls in Fetal Brain MRI

https://doi.org/10.1053/j.semperi.2009.04.008Get rights and content

Recent technological advances in fetal magnetic resonance imaging (MRI) and increased reliability of MRI in depicting abnormalities and lesions, especially in the central nervous system, are increasingly bringing up challenging issues with regard to accurate diagnosis. There are also pitfalls not only attributable to image acquisition but also in clinical interpretation. The misinterpretation of findings because of insufficient knowledge about fetal brain development as visualized by MRI may also be regarded as an important limitation of fetal MRI. We provide an overview of the most common pitfalls experienced in fetal MRI in routine practice, demonstrate how to identify some of the factors that lead to imaging misinterpretation, and suggest ways to tackle these problems, with an emphasis on MR techniques and image calibration.

Section snippets

Incomplete Knowledge of Prenatal Brain Maturation, Which Differs Largely From the Postnatal Presentation of Organs

Before gestational week (GW) 24, for instance, the fetal brain presents without gyri and sulci, with morphology that resembles type I lissencephaly postnatally. Normal fetal brain maturation as visualized on fetal MR examination follows a predictable course that lags behind by weeks compared with the time sequence for maturation as described in neuroanatomic specimens (Table 2). Knowledge of the visualization of important anatomic landmarks, mainly brain sulci, according to gestational age

Choice of Inadequate MRI Sequences

The fetal brain is rich in water. Thus, long T2-relaxation times are required to discriminate intraparenchymal details.2 However, in “fast” or “turbo” spin-echo sequences, the repetition time is set to the “shortest.” The length of the repetition time is also responsible for the duration of a series. As a consequence, in fetuses up to approximately 30 to 32 GW, a series can be completed within 20 to 25 seconds. Later in gestation, with larger fetal heads, more slices are needed, expanding the

Artifacts Obscuring or Blurring Anatomic Details or Showing “Pseudostructures”

An artifact is characterized by any feature that appears in an image but is not present in the original imaged object. Using fetal MRI, artifacts of various origins have been identified. In this review, only those artifacts that might have an impact on fetal brain MRI and interpretation will be addressed. The most common artifacts are those related to maternal or fetal movements. Maternal motion leads to blurring of the entire field of imaging, with ghost images in the direction of phase

Nonorthogonal Sections

An important challenge with MRI is standardization of the orthogonal views of the head. If an oblique view is obtained, the atria can appear falsely enlarged. Moreover, slightly oblique views may also give the impression of cortical clefts (Fig. 10).

Thin sagittal sections are required to show whether the aqueduct is patent. A false suspicion of aqueduct obliteration may be due to technical inability to visualize this structure properly (Fig. 10). Average slice thickness in fetal MRI is 3-5 mm,

Clinical Implications

Because of inadequate knowledge of in utero fetal brain development, a normal developmental state may be misinterpreted as a developmental retardation or malformation of cortical development. As discussed earlier, the most frequent error lies in a diagnosis of lissencephaly syndrome before GW 24, in which a lack of gyration and sulcation corresponds to the age-related normal developmental state. Similarly, knowledge about the lamination of the brain parenchyma until GW 30 is essential to

Conclusions

The correct interpretation of fetal brain MR images requires knowledge of fetal brain development and of normal and pathologic presentation of cerebral structures on respective MR sequences at a specific developmental stage. In addition, sources of possible image degradation must be recognized and the clinician should be aware of the possible solutions to overcome these challenges. The examiner should be able to perform an MRI protocol that is specifically tailored to the clinical question, the

References (13)

There are more references available in the full text version of this article.

Cited by (16)

  • Directive clinique n<sup>o</sup> 410: Anomalies du tube neural: Prévention, dépistage, diagnostic et prise en charge de la grossesse

    2021, Journal of Obstetrics and Gynaecology Canada
    Citation Excerpt :

    Les seules indications convenables sont l'indice de masse corporelle prégestationnel de ≥ 35 kg/m2 ou l'impossibilité d'un dépistage échographique de bonne qualité et en temps opportun entre 18 et 22 SA en raison de facteurs géographiques ou d'un manque d'accès clinique8. L'imagerie par résonance magnétique (IRM) n'est pas un test de dépistage des ATN, mais elle peut être utilisée en complément à l’échographie afin d'orienter les conseils et la planification relativement à la prise en charge69-78. L'IRM fœtale est généralement effectuée après 20 SA, car cet âge gestationnel permet une imagerie optimale de l'encéphale et de l'espace sous-arachnoïdien du fœtus.

  • Guideline No. 410: Prevention, Screening, Diagnosis, and Pregnancy Management for Fetal Neural Tube Defects

    2021, Journal of Obstetrics and Gynaecology Canada
    Citation Excerpt :

    The only appropriate indications are pre-pregnancy body mass index ≥35 kg/m² or unavailability of timely and good-quality sonographic screening at 18 to 22 weeks gestation due to geographic factors or lack of clinical access.8 MRI is not a screening test for NTDs but can be used as an adjunct to sonography to assist with further management planning and counselling.69-78 Fetal MRI is usually conducted after 20 weeks gestation, as this gestational age allows for optimal imaging of the fetal brain and subarachnoid space.

  • Anomalies fœtales affectant le tube neural: Dépistage / diagnostic prénatal et prise en charge de la grossesse

    2016, Journal of Obstetrics and Gynaecology Canada
    Citation Excerpt :

    L’utilisation de l’IRM fœtale (modalité de dépistage principalement reconnue pour ses capacités supérieures en matière d’imagerie du cerveau) a maintenant été élargie pour inclure la détection d’anomalies n’étant pas associées au SNC22,27,67,70. Bien que de nombreuses percées aient été constatées dans le domaine de la technologie de l’IRM (comme l’utilisation de séquences pondérées en T2 [lesquelles permettent l’obtention d’un meilleur contraste et d’une meilleure résolution spatiale] et l’acquisition rapide au moyen d’une seule impulsion s’accompagnant d’améliorations en matière de relaxation [dans le but d’atténuer les effets des mouvements fœtaux]22,69–71), aucune norme de référence en matière d’imagerie n’a été établie puisque l’IRM n’est pas utilisée à titre de modalité de dépistage22,67,70,72. La visualisation du cerveau fœtal par IRM souligne l’importance de l’utilisation des bonnes modalités d’imagerie et de l’exactitude de l’interprétation radiologique.

  • Fetal Cerebral Magnetic Resonance Imaging Beyond Morphology

    2015, Seminars in Ultrasound, CT and MRI
    Citation Excerpt :

    In addition to fetal motion, maternal motion also contributes to the inconsistencies in the reproducibility of fetal MR data. In particular, the intrauterine position of the fetus is relevant for the quality of DTI source data.38,47 If the fetus is in the breech position, maternal breathing motion leads to significant displacement of the fetal head and brain along its z axis.

View all citing articles on Scopus
View full text