Semin Neurol 2008; 28(4): 548-557
DOI: 10.1055/s-0028-1083698
© Thieme Medical Publishers

Neuroimaging of Traumatic Brain Injury

Jacob G. Dubroff1 , Andrew Newberg1
  • 1Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
Further Information

Publication History

Publication Date:
08 October 2008 (online)

ABSTRACT

Head trauma requires several different neuroimaging modalities for adequate evaluation and determination of treatment. This article considers the importance of anatomical and functional imaging modalities in the initial evaluation, treatment planning, and long-term management of patients with head injury. These modalities include computed tomography, magnetic resonance imaging, positron emission tomography, and single photon emission computed tomography. Each modality offers specific advantages and potential disadvantages. However, it is important to understand the capabilities of each modality, and how and when each one might provide the most valuable information as one evaluates such patients.

REFERENCES

  • 1 Finkelstein E CP, Corso P S, Miller T. The Incidence and Economic Burden of Injuries in the United States. New York, NY; Oxford University Press 2006
  • 2 Rutland-Brown W, Langlois J A, Thomas K E, Xi Y L. Incidence of traumatic brain injury in the United States, 2003.  J Head Trauma Rehabil. 2006;  21 544-548
  • 3 Thurman D J, Alverson C, Dunn K A, Guerrero J, Sniezek J E. Traumatic brain injury in the United States: a public health perspective.  J Head Trauma Rehabil. 1999;  14 602-615
  • 4 Haydel M J, Preston C A, Mills T J, Luber S, Blaudeau E, DeBlieux P M. Indications for computed tomography in patients with minor head injury.  N Engl J Med. 2000;  343 100-105
  • 5 Lee B, Newberg A. Neuroimaging in traumatic brain imaging.  NeuroRx. 2005;  2 372-383
  • 6 Stiell I G, Clement C M, Rowe B H et al.. Comparison of the Canadian CT Head Rule and the New Orleans Criteria in patients with minor head injury.  JAMA. 2005;  294 1511-1518
  • 7 Stiell I G, Wells G A, Vandemheen K et al.. The Canadian CT Head Rule for patients with minor head injury.  Lancet. 2001;  357 1391-1396
  • 8 Stein S C, Burnett M G, Glick H A. Indications for CT scanning in mild traumatic brain injury: a cost-effectiveness study.  J Trauma. 2006;  61 558-566
  • 9 Smith J S, Chang E F, Rosenthal G et al.. The role of early follow-up computed tomography imaging in the management of traumatic brain injury patients with intracranial hemorrhage.  J Trauma. 2007;  63 75-82
  • 10 Brenner D J, Hall E J. Computed tomography—an increasing source of radiation exposure.  N Engl J Med. 2007;  357 2277-2284
  • 11 Mettler Jr F A, Voelz G L. Major radiation exposure—what to expect and how to respond.  N Engl J Med. 2002;  346 1554-1561
  • 12 Sherer M, Stouter J, Hart T et al.. Computed tomography findings and early cognitive outcome after traumatic brain injury.  Brain Inj. 2006;  20 997-1005
  • 13 Maas A I, Steyerberg E W, Butcher I et al.. Prognostic value of computerized tomography scan characteristics in traumatic brain injury: results from the IMPACT study.  J Neurotrauma. 2007;  24 303-314
  • 14 Doezema D, King J N, Tandberg D, Espinosa M C, Orrison W W. Magnetic resonance imaging in minor head injury.  Ann Emerg Med. 1991;  20 1281-1285
  • 15 Mittl R L, Grossman R I, Hiehle J F et al.. Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury and normal head CT findings.  AJNR Am J Neuroradiol. 1994;  15 1583-1589
  • 16 De Coene B, Hajnal J V, Pennock J M, Bydder G M. MRI of the brain stem using fluid attenuated inversion recovery pulse sequences.  Neuroradiology. 1993;  35 327-331
  • 17 De Coene B, Hajnal J V, Gatehouse P et al.. MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences.  AJNR Am J Neuroradiol. 1992;  13 1555-1564
  • 18 Oatridge A, Hajnal J V, Cowan F M, Baudouin C J, Young I R, Bydder G M. MRI diffusion-weighted imaging of the brain: contributions to image contrast from CSF signal reduction, use of a long echo time and diffusion effects.  Clin Radiol. 1993;  47 82-90
  • 19 Arnould M C, Grandin C B, Peeters A, Cosnard G, Duprez T P. Comparison of CT and three MR sequences for detecting and categorizing early (48 hours) hemorrhagic transformation in hyperacute ischemic stroke.  AJNR Am J Neuroradiol. 2004;  25 939-944
  • 20 Mezzapesa D M, Petruzzellis M, Lucivero V et al.. Multimodal MR examination in acute ischemic stroke.  Neuroradiology. 2006;  48 238-246
  • 21 Pierallini A, Pantano P, Fantozzi L M et al.. Correlation between MRI findings and long-term outcome in patients with severe brain trauma.  Neuroradiology. 2000;  42 860-867
  • 22 Ezaki Y, Tsutsumi K, Morikawa M, Nagata I. Role of diffusion-weighted magnetic resonance imaging in diffuse axonal injury.  Acta Radiol. 2006;  47 733-740
  • 23 Marquez de la Plata C, Ardelean A, Koovakkattu D et al.. Magnetic resonance imaging of diffuse axonal injury: quantitative assessment of white matter lesion volume.  J Neurotrauma. 2007;  24 591-598
  • 24 Newcombe V F, Williams G B, Nortje J et al.. Analysis of acute traumatic axonal injury using diffusion tensor imaging.  Br J Neurosurg. 2007;  21 340-348
  • 25 Park C O, Hyun D K. Apoptotic change in response to magnesium therapy after moderate diffuse axonal injury in rats.  Yonsei Med J. 2004;  45 908-916
  • 26 Smith D H, Meaney D F, Shull W H. Diffuse axonal injury in head trauma.  J Head Trauma Rehabil. 2003;  18 307-316
  • 27 Levine B, Fujiwara E, O'Connor C et al.. In vivo characterization of traumatic brain injury neuropathology with structural and functional neuroimaging.  J Neurotrauma. 2006;  23 1396-1411
  • 28 Xu J, Rasmussen I A, Lagopoulos J, Haberg A. Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging.  J Neurotrauma. 2007;  24 753-765
  • 29 Ashwal S, Babikian T, Gardner-Nichols J, Freier M C, Tong K A, Holshouser B A. Susceptibility-weighted imaging and proton magnetic resonance spectroscopy in assessment of outcome after pediatric traumatic brain injury.  Arch Phys Med Rehabil. 2006;  87 S50-S58
  • 30 Chua T C, Wen W, Slavin M J, Sachdev P S. Diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease: a review.  Curr Opin Neurol. 2008;  21 83-92
  • 31 Focke N K, Yogarajah M, Bonelli S B, Bartlett P A, Symms M R, Duncan J S. Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis.  Neuroimage. 2008;  40 728-737
  • 32 Wang S, Poptani H, Bilello M et al.. Diffusion tensor imaging in amyotrophic lateral sclerosis: volumetric analysis of the corticospinal tract.  AJNR Am J Neuroradiol. 2006;  27 1234-1238
  • 33 Miles L, Grossman R I, Johnson G, Babb J S, Diller L, Inglese M. Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury.  Brain Inj. 2008;  22 115-122
  • 34 Sidaros A, Engberg A W, Sidaros K et al.. Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study.  Brain. 2008;  131 559-572
  • 35 Rutgers D R, Toulgoat F, Cazejust J, Fillard P, Lasjaunias P, Ducreux D. White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study.  AJNR Am J Neuroradiol. 2008;  29 514-519
  • 36 Gennarelli T A. The spectrum of traumatic axonal injury.  Neuropathol Appl Neurobiol. 1996;  22 509-513
  • 37 Adams J H, Doyle D, Ford I, Gennarelli T A, Graham D I, McLellan D R. Diffuse axonal injury in head injury: definition, diagnosis and grading.  Histopathology. 1989;  15 49-59
  • 38 Ogawa S, Lee T M, Kay A R, Tank D W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation.  Proc Natl Acad Sci U S A. 1990;  87 9868-9872
  • 39 Aharon I, Etcoff N, Ariely D, Chabris C F, O'Connor E, Breiter H C. Beautiful faces have variable reward value: fMRI and behavioral evidence.  Neuron. 2001;  32 537-551
  • 40 Apkarian A V, Gelnar P A, Krauss B R, Szeverenyi N M. Cortical responses to thermal pain depend on stimulus size: a functional MRI study.  J Neurophysiol. 2000;  83 3113-3122
  • 41 Hashimoto R, Sakai K L. Learning letters in adulthood: direct visualization of cortical plasticity for forming a new link between orthography and phonology.  Neuron. 2004;  42 311-322
  • 42 Hodge Jr C J, Huckins S C, Szeverenyi N M, Fonte M M, Dubroff J G, Davuluri K. Patterns of lateral sensory cortical activation determined using functional magnetic resonance imaging.  J Neurosurg. 1998;  89 769-779
  • 43 Loughead J, Gur R C, Elliott M, Gur R E. Neural circuitry for accurate identification of facial emotions.  Brain Res. 2008;  1194 37-44
  • 44 Miyanari A, Kaneoke Y, Noguchi Y et al.. Human brain activation in response to olfactory stimulation by intravenous administration of odorants.  Neurosci Lett. 2007;  423 6-11
  • 45 Samuel M, Williams S C, Leigh P N et al.. Exploring the temporal nature of hemodynamic responses of cortical motor areas using functional MRI.  Neurology. 1998;  51 1567-1575
  • 46 Cohen M S, Bookheimer S Y. Localization of brain function using magnetic resonance imaging.  Trends Neurosci. 1994;  17 268-277
  • 47 Chen W, Ugurbil K. High spatial resolution functional magnetic resonance imaging at very-high-magnetic field.  Top Magn Reson Imaging. 1999;  10 63-78
  • 48 Ugurbil K, Hu X, Chen W, Zhu X H, Kim S G, Georgopoulos A. Functional mapping in the human brain using high magnetic fields.  Philos Trans R Soc Lond B Biol Sci. 1999;  354 1195-1213
  • 49 Christodoulou C, DeLuca J, Ricker J H et al.. Functional magnetic resonance imaging of working memory impairment after traumatic brain injury.  J Neurol Neurosurg Psychiatry. 2001;  71 161-168
  • 50 Newsome M R, Scheibel R S, Steinberg J L et al.. Working memory brain activation following severe traumatic brain injury.  Cortex. 2007;  43 95-111
  • 51 Perlstein W M, Cole M A, Demery J A et al.. Parametric manipulation of working memory load in traumatic brain injury: behavioral and neural correlates.  J Int Neuropsychol Soc. 2004;  10 724-741
  • 52 Scheibel R S, Newsome M R, Steinberg J L et al.. Altered brain activation during cognitive control in patients with moderate to severe traumatic brain injury.  Neurorehabil Neural Repair. 2007;  21 36-45
  • 53 Scheibel R S, Pearson D A, Faria L P et al.. An fMRI study of executive functioning after severe diffuse TBI.  Brain Inj. 2003;  17 919-930
  • 54 Strangman G, O'Neil-Pirozzi T M, Burke D et al.. Functional neuroimaging and cognitive rehabilitation for people with traumatic brain injury.  Am J Phys Med Rehabil. 2005;  84 62-75
  • 55 Henriksen O. In vivo quantitation of metabolite concentrations in the brain by means of proton MRS.  NMR Biomed. 1995;  8 139-148
  • 56 Cohen B A, Inglese M, Rusinek H, Babb J S, Grossman R I, Gonen O. Proton MR spectroscopy and MRI-volumetry in mild traumatic brain injury.  AJNR Am J Neuroradiol. 2007;  28 907-913
  • 57 Friedman S D, Brooks W M, Jung R E et al.. Quantitative proton MRS predicts outcome after traumatic brain injury.  Neurology. 1999;  52 1384-1391
  • 58 Friedman S D, Brooks W M, Jung R E, Hart B L, Yeo R A. Proton MR spectroscopic findings correspond to neuropsychological function in traumatic brain injury.  AJNR Am J Neuroradiol. 1998;  19 1879-1885
  • 59 Nakabayashi M, Suzaki S, Tomita H. Neural injury and recovery near cortical contusions: a clinical magnetic resonance spectroscopy study.  J Neurosurg. 2007;  106 370-377
  • 60 Signoretti S, Marmarou A, Aygok G A, Fatouros P P, Portella G, Bullock R M. Assessment of mitochondrial impairment in traumatic brain injury using high-resolution proton magnetic resonance spectroscopy.  J Neurosurg. 2008;  108 42-52
  • 61 Ashwal S, Holshouser B A, Shu S K et al.. Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury.  Pediatr Neurol. 2000;  23 114-125
  • 62 Hillary F G, Liu W C, Genova H M et al.. Examining lactate in severe TBI using proton magnetic resonance spectroscopy.  Brain Inj. 2007;  21 981-991
  • 63 Makoroff K L, Cecil K M, Care M, Ball Jr W S. Elevated lactate as an early marker of brain injury in inflicted traumatic brain injury.  Pediatr Radiol. 2005;  35 668-676
  • 64 Glenn T C, Kelly D F, Boscardin W J et al.. Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism.  J Cereb Blood Flow Metab. 2003;  23 1239-1250
  • 65 Ashwal S, Holshouser B, Tong K et al.. Proton MR spectroscopy detected glutamate/glutamine is increased in children with traumatic brain injury.  J Neurotrauma. 2004;  21 1539-1552
  • 66 Ashwal S, Holshouser B A, Tong K A. Use of advanced neuroimaging techniques in the evaluation of pediatric traumatic brain injury.  Dev Neurosci. 2006;  28 309-326
  • 67 Babikian T, Freier M C, Ashwal S, Riggs M L, Burley T, Holshouser B A. MR spectroscopy: predicting long-term neuropsychological outcome following pediatric TBI.  J Magn Reson Imaging. 2006;  24 801-811
  • 68 Podoloff D A, Macapinlac H A. PET and PET/CT in management of the lymphomas.  Radiol Clin North Am. 2007;  45 689-696
  • 69 Torigian D A, Huang S S, Houseni M, Alavi A. Functional imaging of cancer with emphasis on molecular techniques.  CA Cancer J Clin. 2007;  57 206-224
  • 70 Wynants J, Stroobants S, Dooms C, Vansteenkiste J. Staging of lung cancer.  Radiol Clin North Am. 2007;  45 609-625
  • 71 Antoch G, Stattaus J, Nemat A T et al.. Non-small cell lung cancer: dual-modality PET/CT in preoperative staging.  Radiology. 2003;  229 526-533
  • 72 Bar-Shalom R, Yefremov N, Guralnik L et al.. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management.  J Nucl Med. 2003;  44 1200-1209
  • 73 Schoder H, Yeung H W, Gonen M, Kraus D, Larson S M. Head and neck cancer: clinical usefulness and accuracy of PET/CT image fusion.  Radiology. 2004;  231 65-72
  • 74 Greenberg J H, Reivich M, Alavi A et al.. Metabolic mapping of functional activity in human subjects with the [18F]fluorodeoxyglucose technique.  Science. 1981;  212 678-680
  • 75 Reivich M, Kuhl D, Wolf A et al.. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man.  Circ Res. 1979;  44 127-137
  • 76 Alavi A, Dann R, Chawluk J, Alavi J, Kushner M, Reivich M. Positron emission tomography imaging of regional cerebral glucose metabolism.  Semin Nucl Med. 1986;  16 2-34
  • 77 Bergsneider M, Hovda D A, Lee S M et al.. Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury.  J Neurotrauma. 2000;  17 389-401
  • 78 Nakamizo A, Inamura T, Amano T et al.. Decreased thalamic metabolism without thalamic magnetic resonance imaging abnormalities following shearing injury to the substantia nigra.  J Clin Neurosci. 2002;  9 685-688
  • 79 Fontaine A, Azouvi P, Remy P, Bussel B, Samson Y. Functional anatomy of neuropsychological deficits after severe traumatic brain injury.  Neurology. 1999;  53 1963-1968
  • 80 Nakayama N, Okumura A, Shinoda J, Nakashima T, Iwama T. Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions: an FDG-PET study with statistical parametric mapping analysis.  J Neurol Neurosurg Psychiatry. 2006;  77 856-862
  • 81 Shiga T, Ikoma K, Katoh C et al.. Loss of neuronal integrity: a cause of hypometabolism in patients with traumatic brain injury without MRI abnormality in the chronic stage.  Eur J Nucl Med Mol Imaging. 2006;  33 817-822
  • 82 Alavi A, Mirot A, Newberg A et al.. Fluorine-18-FDG evaluation of crossed cerebellar diaschisis in head injury.  J Nucl Med. 1997;  38 1717-1720
  • 83 Alavi A, Newberg A B. Metabolic consequences of acute brain trauma: is there a role for PET?.  J Nucl Med. 1996;  37 1170-1172
  • 84 Bergsneider M, Hovda D A, McArthur D L et al.. Metabolic recovery following human traumatic brain injury based on FDG-PET: time course and relationship to neurological disability.  J Head Trauma Rehabil. 2001;  16 135-148
  • 85 Chetelat G, Eustache F, Viader F et al.. FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment.  Neurocase. 2005;  11 14-25
  • 86 Langfitt T W, Obrist W D, Alavi A et al.. Computerized tomography, magnetic resonance imaging, and positron emission tomography in the study of brain trauma. Preliminary observations.  J Neurosurg. 1986;  64 760-767
  • 87 Ricker J H, Muller R A, Zafonte R D, Black K M, Millis S R, Chugani H. Verbal recall and recognition following traumatic brain injury: a [0–15]-water positron emission tomography study.  J Clin Exp Neuropsychol. 2001;  23 196-206
  • 88 Johnston A J, Steiner L A, Chatfield D A et al.. Effect of cerebral perfusion pressure augmentation with dopamine and norepinephrine on global and focal brain oxygenation after traumatic brain injury.  Intensive Care Med. 2004;  30 791-797
  • 89 Coles J P, Fryer T D, Smielewski P et al.. Defining ischemic burden after traumatic brain injury using 15O PET imaging of cerebral physiology.  J Cereb Blood Flow Metab. 2004;  24 191-201
  • 90 Gupta A K, Hutchinson P J, Fryer T et al.. Measurement of brain tissue oxygenation performed using positron emission tomography scanning to validate a novel monitoring method.  J Neurosurg. 2002;  96 263-268
  • 91 Jansen H M, van der Naalt J, van Zomeren A H et al.. Cobalt-55 positron emission tomography in traumatic brain injury: a pilot study.  J Neurol Neurosurg Psychiatry. 1996;  60 221-224
  • 92 Ikeda Y, Long D M. The molecular basis of brain injury and brain edema: the role of oxygen free radicals.  Neurosurgery. 1990;  27 1-11
  • 93 Schmidley J W. Free radicals in central nervous system ischemia.  Stroke. 1990;  21 1086-1090
  • 94 Yamaki T, Imahori Y, Ohmori Y et al.. Cerebral hemodynamics and metabolism of severe diffuse brain injury measured by PET.  J Nucl Med. 1996;  37 1166-1170
  • 95 Goncalves J M, Vaz R, Cerejo A et al.. HM-PAO SPECT in head trauma.  Acta Neurochir Suppl (Wien). 1992;  55 11-13
  • 96 Abdel-Dayem H M, Abu-Judeh H, Kumar M et al.. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.  Clin Nucl Med. 1998;  23 309-317
  • 97 Masdeu J C, Abdel-Dayem H, Van Heertum R L. Head trauma: use of SPECT.  J Neuroimaging. 1995;  5(S1) S53-S57
  • 98 Mann N M, Vento J A. A study comparing SPECT and MRI in patients with anosmia after traumatic brain injury.  Clin Nucl Med. 2006;  31 458-462
  • 99 Abu-Judeh H H, Singh M, Masdeu J C, Abdel-Dayem H M. Discordance between FDG uptake and technetium-99m-HMPAO brain perfusion in acute traumatic brain injury.  J Nucl Med. 1998;  39 1357-1359
  • 100 Abdel-Dayem H M, Sadek S A, Kouris K et al.. Changes in cerebral perfusion after acute head injury: comparison of CT with Tc-99m HM-PAO SPECT.  Radiology. 1987;  165 221-226
  • 101 Reid R H, Gulenchyn K Y, Ballinger J R, Ventureyra E C. Cerebral perfusion imaging with technetium-99m HMPAO following cerebral trauma. Initial experience.  Clin Nucl Med. 1990;  15 383-388
  • 102 Gray B G, Ichise M, Chung D G, Kirsh J C, Franks W. Technetium-99m-HMPAO SPECT in the evaluation of patients with a remote history of traumatic brain injury: a comparison with x-ray computed tomography.  J Nucl Med. 1992;  33 52-58
  • 103 Roper S N, Mena I, King W A et al.. An analysis of cerebral blood flow in acute closed-head injury using technetium-99m-HMPAO SPECT and computed tomography.  J Nucl Med. 1991;  32 1684-1687
  • 104 Sakas D E, Bullock M R, Patterson J, Hadley D, Wyper D J, Teasdale G M. Focal cerebral hyperemia after focal head injury in humans: a benign phenomenon?.  J Neurosurg. 1995;  83 277-284

Andrew NewbergM.D. 

Department of Radiology, Nuclear Medicine Section

Hospital of the University of Pennsylvania, Room 110, Donner Building, Philadelphia, PA 19104

Email: andrew.newberg@uphs.upenn.edu

    >