Minim Invasive Neurosurg 2005; 48(4): 228-234
DOI: 10.1055/s-2005-870952
Original Article
© Georg Thieme Verlag Stuttgart · New York

Differentiation of the Radiation-Induced Necrosis and Tumor Recurrence after Gamma Knife Radiosurgery for Brain Metastases: Importance of Multi-Voxel Proton MRS

M.  Chernov1 , M.  Hayashi1 , M.  Izawa1 , T.  Ochiai1 , M.  Usukura2 , K.  Abe2 , Y.  Ono2 , Y.  Muragaki1 , O.  Kubo1 , T.  Hori1 , K.  Takakura1
  • 1Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
  • 2Department of Neuroradiology, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
Further Information

Publication History

Publication Date:
20 September 2005 (online)

Abstract

Comparative analysis of the diagnostic accuracy of FDG PET, single-voxel, and multi-voxel proton MRS for differentiation between radiation-induced necrosis and tumor recurrence was done in 9 patients with brain metastases treated by gamma knife radiosurgery. In all cases enlargement of the lesion and increase of the perilesional edema were demonstrated by MRI on average 10.6 ± 2.6 months after initial treatment. Radiation-induced necrosis was identified in 5 patients (histologically in 2, clinically in 3). In one of these a false positive result of FDG PET was observed, whereas data of proton MRS were always correct. The diagnosis of tumor recurrence was established in 4 patients (histologically in 3, clinically in 1). Among these both FDG PET and single-voxel proton MRS showed false negative results (each method twice), whereas multi-voxel proton MRS always permitted us to establish the correct diagnosis. The present study demonstrates the higher diagnostic accuracy of multi-voxel proton MRS, in comparison with single-voxel proton MRS and FDG PET, for the differentiation of the radiation-induced necrosis and tumor recurrence. Its use is especially important in mixed lesions with co-existence of both post-irradiation changes and viable neoplasm. Monitoring of the treatment response by serial multi-voxel proton MRS seems to be reasonable during follow-up of patients with brain metastases after radiosurgery.

References

  • 1 Chin L S, Ma L, DiBiase S. Radiation necrosis following gamma knife surgery: a case-controlled comparison of treatment parameters and long-term clinical follow-up.  J Neurosurg. 2001;  94 899-904
  • 2 Kimura T, Sako K, Tohyama Y, Aizawa S, Yoshida H, Aburano T, Tanaka K, Tanaka T. Diagnosis and treatment of progressive space-occupying radiation necrosis following stereotactic radiosurgery for brain metastases: value of proton magnetic resonance spectroscopy.  Acta Neurochir (Wien). 2003;  145 557-564
  • 3 Kamada K, Houkin K, Abe H, Sawamura Y, Kashiwaba T. Differentiation of cerebral radiation necrosis from tumor recurrence by proton magnetic resonance spectroscopy.  Neurol Med Chir (Tokyo). 1997;  37 250-256
  • 4 Ricci P E, Pitt A, Keller P l, Coons S W, Heiserman J E. Effect of voxel position on single-voxel MR spectroscopy findings.  AJNR Am J Neuroradiol. 2000;  21 367-374
  • 5 Chao S T, Suh J H, Raja S, Lee S Y, Barnett G. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery.  Int J Cancer. 2001;  96 191-197
  • 6 Ross D A, Sandler H M, Balter J M, Hayman J A, Archer P G, Auer D L. Imaging changes after stereotactic radiosurgery of primary and secondary malignant brain tumors.  J Neuro-Oncol. 2002;  56 175-181
  • 7 Rock J P, Hearshen D, Scarpace L, Croteau D, Gutierrez J, Fisher J L, Rosenblum M L, Mikkelsen T. Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis.  Neurosurgery. 2002;  51 912-920
  • 8 Langleben D D, Segall G M. PET in differentiation of recurrent brain tumor from radiation injury.  J Nucl Med. 2000;  41 1861-1867
  • 9 Schlemmer H-P, Bachert P, Henze M, Buslei R, Herfarth K K, Debus J, Kaick G van. Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy.  Neuroradiology. 2002;  44 216-222
  • 10 Kamada K, Mastuo T, Tani M, Izumo T, Suzuki Y, Okimoto T, Hayashi N, Hyashi K, Shibata S. Effects of stereotactic radiosurgery on metastatic brain tumors of various histopathologies.  Neuropathology. 2001;  21 307-314
  • 11 Yoshino E, Ohmori Y, Imahori Y, Higuchi T, Furuya S, Naruse S, Mori T, Suzuki K, Yamaki T, Ueda S, Tsuzuki T, Takai S. Irradiation effects on the metabolism of metastatic brain tumors: analysis by positron emission tomography and 1H-magnetic resonance spectroscopy.  Stereotact Funct Neurosurg. 1996;  66 (Suppl 1) 240-259
  • 12 Kizu O, Naruse S, Furuya S, Morishita H, Ide M, Maeda T, Ueda S. Application of proton chemical shift imaging in monitoring of gamma knife radiosurgery on brain tumors.  Magn Reson Imaging. 1998;  16 197-204
  • 13 Schlemmer H-P, Bachert P, Herfarth K K, Zuna I, Debus J, Kaick G van. Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy.  AJNR Am J Neuroradiol. 2001;  22 1316-1324
  • 14 Traber F, Block W, Flacke S, Lamerichs R, Schuller H, Urbach H, Keller E, Schild H H. [1H-MR spectroscopy of brain tumors in the course of radiation therapy: use of fast spectroscopic imaging and single-voxel spectroscopy for diagnosing recurrence].  Röfo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr. 2002;  174 33-42 (in German)
  • 15 Rabinov J D, Lee P L, Barker F G, Louis D N, Harsh G R IV, Cosgrove G R, Chiocca E A, Thornton A F, Loeffler J S, Henson J W, Gonzalez R G. In vivo 3-T MR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience.  Radiology. 2002;  225 871-879
  • 16 Tsuyuguchi N, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Takami T, Otsuka Y, Sakamoto S, Ohata K, Goto T, Hara M. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible?.  J Neurosurg. 2003;  98 1056-1064
  • 17 Weber M A, Lichy M P, Thilmann C, Gunther M, Bachert P, Maudsley A A, Delorme S, Schad L R, Debus J, Schlemmer H P. [Monitoring of irradiated brain metastases using MR perfusion imaging and 1H MR spectroscopy].  Radiologe. 2003;  43 388-395 (in German)
  • 18 Rock J P, Scarpace L, Hearshen D, Gutierrez J, Fisher J L, Rosenblum M, Mikkelsen T. Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis.  Neurosurgery. 2004;  54 1111-1119
  • 19 Kimura T, Sako K, Tanaka K, Gotoh T, Yoshida H, Aburano T, Tanaka T, Arai H, Nakada T. Evaluation of the response of metastatic brain tumors to stereotactic radiosurgery by proton magnetic resonance spectroscopy, 2O1TlCl single-photon emission computerized tomography, and gadolinium-enhanced magnetic resonance imaging.  J Neurosurg. 2004;  100 835-841
  • 20 Lee P L, Gonzalez R G. Magnetic resonance spectroscopy of brain tumors.  Curr Opin Oncol. 2000;  12 199-204
  • 21 Chernov M F, Hayashi M, Izawa M, Abe K, Usukura M, Ono Y, Kubo O, Hori T. Early metabolic changes in metastatic brain tumors after gamma knife radiosurgery: 1H-MRS study.  Brain Tumor Pathol. 2004;  21 63-67

Mikhail Chernov, M. D. 

Department of Neurosurgery, Neurological Institute · Tokyo Women's Medical University

8-1 Kawada-cho

Shinjuku-ku

Tokyo 162-8666

Japan ·

Phone: +81-3-3353-8111 (ext. 26216)

Fax: +81-3-5269-7438

Email: m_chernov@yahoo.com

    >