Skip to main content
Log in

Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Rates of coronary restenosis after stent implantation vary with stent design. Recent evidence suggests that alterations in wall shear stress associated with different stent types and changes in local vessel geometry after implantation may account for this disparity. We tested the hypothesis that wall shear stress is altered in a three-dimensional computational fluid dynamics (CFD) model after coronary implantation of a 16 mm slotted-tube stent during simulations of resting blood flow and maximal vasodilation. Canine left anterior descending coronary artery blood flow velocity and interior diameter were used to construct CFD models and evaluate wall shear stress proximal and distal to and within the stented region. Channeling of adjacent blood layers due to stent geometry had a profound affect on wall shear stress. Stagnation zones were localized around stent struts. Minimum wall shear stress decreased by 77% in stented compared to unstented vessels. Regions of low wall shear stress were extended at the stent outlet and localized to regions where adjacent axial strut spacing was minimized and the circumferential distance between struts was greatest within the stent. The present results depict alterations in wall shear stress caused by a slotted-tube stent and support the hypothesis that stent geometry may be a risk factor for restenosis by affecting local wall shear stress distributions. © 2003 Biomedical Engineering Society.

PAC2003: 8719Rr, 8710+e, 8780Rb, 8719Uv

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Back, M., G. Kopchok, M. Mueller, D. Cavaye, C. Donayre, and R. A. White. Changes in arterial wall compliance after endovascular stenting. J. Vasc. Surg.19:905–911, 1994.

    Google Scholar 

  2. Berry, J. L., J. J. E. Moore, V. S. Newman, and W. D. Routh. flow visualization in stented arterial segments. J. Vasc. Invest.3:63–68, 1997.

    Google Scholar 

  3. Berry, J. L., A. Santamarina, J. J. E. Moore, S. Roychowdhury, and W. D. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng.28:386–398, 2000.

    Google Scholar 

  4. Caramori, P. R., V. C. Lima, P. H. Seidelin, G. E. Newton, J. D. Parker, and A. G. Adelman. Long-term endothelial dysfunction after coronary artery stenting. J. Am. Coll. Cardiol.34:1675–1679, 1999.

    Google Scholar 

  5. DePaola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb.12:1254–1257, 1992.

    Google Scholar 

  6. Edelman, E. R., and C. Rogers. Pathobiologic responses to stenting. Am. J. Cardiol.81:4E-6E, 1998.

    Google Scholar 

  7. Erbel, R., M. Haude, H. W. Hopp, D. Franzen, H. J. Rupprecht, B. Heublein, K. Fischer, P. de Jaegere, P. Serruys, W. Rutsch, and P. Probst. Coronary-artery stenting compared with balloon angioplasty for restenosis after initial balloon angioplasty. Restenosis Stent Study Group. N. Engl. J. Med.339:1672–1678, 1998.

    Google Scholar 

  8. Fischman, D. L., M. B. Leon, D. S. Baim, R. A. Schatz, M. P. Savage, I. Penn, K. Detre, L. Veltri, D. Ricci, and M. Nobuyoshi. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N. Engl. J. Med.331:496–501, 1994.

    Google Scholar 

  9. Flueckiger, F., H. Sternthal, G. E. Klein, M. Aschauer, D. Szolar, and G. Kleinhappl. Strength, elasticity, and plasticity of expandable metal stents: studies with three types of stress. J. Vasc. Interv Radiol.5:745–750, 1994.

    Google Scholar 

  10. Fontaine, A. B., D. G. Spigos, G. Eaton, S. Das Passos, G. Christoforidis, H. Khabiri, and S. Jung. Stent-induced intimal hyperplasia: Are there fundamental differences between flexible and rigid stent designs?J. Vasc. Interv Radiol.5:739–744, 1994.

    Google Scholar 

  11. Hoffmann, R., G. S. Mintz, G. R. Dussaillant, J. J. Popma, A. D. Pichard, L. F. Satler, K. M. Kent, J. Griffin, and M. B. Leon. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation94:1247–1254, 1996.

    Google Scholar 

  12. Ilegbusi, O. J., Z. Hu, R. Nesto, S. Waxman, D. Cyganski, J. Kilian, P. H. Stone, and C. L. Feldman. Determination of blood flow and endothelial shear stress in human coronary artery. J. Invasive Cardiol.11:667–674, 1999.

    Google Scholar 

  13. Kastrati, A., J. Mehilli, J. Dirschinger, J. Pache, K. Ulm, H. Schuhlen, M. Seyfarth, C. Schmitt, R. Blasini, F. J. Neumann, and A. Schomig. Restenosis after coronary placement of various stent types. Am. J. Cardiol.87:34–39, 2001.

    Google Scholar 

  14. Kirpalani, A., H. Park, J. Butany, K. W. Johnston, and M. Ojha. Velocity and wall shear stress patterns in the human right coronary artery. J. Biomech. Eng.121:370–375, 1999.

    Google Scholar 

  15. Kohler, T. R., T. R. Kirkman, L. W. Kraiss, B. K. Zierler, and A. W. Clowes. Increased blood flow inhibits neointimal hyperplasia in endothelialized vascular grafts. Circ. Res.69:1557–1565, 1991.

    Google Scholar 

  16. Ku, D. N.Blood flow in arteries. Annu. Rev. Fluid Mech.29:399–434, 1997.

    Google Scholar 

  17. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis (Dallas)5:293–302, 1985.

    Google Scholar 

  18. LaDisa, J. F., D. A. Hettrick, L. E. Olson, I. Guler, E. R. Gross, T. T. Kress, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Coronary stent implantation alters coronary artery hemodynamics and wall shear stress during maximal vasodilation. J. Appl. Physiol.93:1939–1946, 2002.

    Google Scholar 

  19. Liu, S. Q., and J. Goldman. Role of blood shear stress in the regulation of vascular smooth muscle cell migration. IEEE Trans. Biomed. Eng.48:474–483, 2001.

    Google Scholar 

  20. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc.282:2035–2042, 1999.

    Google Scholar 

  21. Moore, Jr., J. E., C. Xu, S. Glagov, C. K. Zarins, and D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: Oscillatory behavior and relationship to atherosclerosis. Atherosclerosis110:225–240, 1994.

    Google Scholar 

  22. Myers, J. G., J. A. Moore, M. Ojha, K. W. Johnston, and C. R. Ethier. Factors influencing blood flow patterns in the human right coronary artery. Ann. Biomed. Eng.29:109–120, 2001.

    Google Scholar 

  23. Newman, V. S., J. L. Berry, W. D. Routh, C. M. Ferrario, and R. H. Dean. Effects of vascular stent surface area and hemodynamics on intimal thickening. J. Vasc. Interv. Radiol.7:387–393, 1996.

    Google Scholar 

  24. Nichols, W. W., and M. F. O'Rourke. McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 4th ed. New York: Oxford University Press, 1998.

    Google Scholar 

  25. Peacock, J., S. Hankins, T. Jones, and R. Lutz. Flow instabilities induced by coronary artery stents: Assessment with an pulse duplicator. J. Biomech.28:17–26, 1995.

    Google Scholar 

  26. Qiu, Y., and J. M. Tarbell. Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J. Biomech. Eng.122:77–85, 2000.

    Google Scholar 

  27. Rogers, C., and E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombus. Circulation91:2995–3001, 1995.

    Google Scholar 

  28. Rogers, C., E. R. Edelman, and D. I. Simon. A mAb to the beta2–leukocyte integrin Mac-1 (CD11b/CD18) reduces intimal thickening after angioplasty or stent implantation in rabbits. Proc. Natl. Acad. Sci. U.S.A.95:10134–10139, 1998.

    Google Scholar 

  29. Rogers, C., F. G. P. Welt, M. J. Karnovsky, and E. R. Edelman. Monocyte recruitment and neointimal hyperplasia in rabbits. Arterioscler., Thromb., Vasc. Biol.16:1312–1318, 1996.

    Google Scholar 

  30. Sabbah, H. N., F. Khaja, E. T. Hawkins, J. F. Brymer, T. M. McFarland, J. van der Bel-Kahn, P. T. Doerger, and P. D. Stein. Relation of atherosclerosis to arterial wall shear in the left anterior descending coronary artery of man. Am. Heart J.112:453–458, 1986.

    Google Scholar 

  31. Schatz, R. A., J. C. Palmaz, F. O. Tio, F. Garcia, O. Garcia, and S. R. Reuter. Balloon-expandable intracoronary stents in the adult dog. Circulation76:450–457, 1987.

    Google Scholar 

  32. Serruys, P., P. De Jaegere, F. Kiemeneij, C. Macaya, W. Rutch, G. Heyndrickx, H. Emanuelsson, J. Marco, V. Legrand, P. Materne, J. Belardi, U. Sigwart, A. Colombo, J. J. Goy, D. J. Morel, and M.-A. Morel. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary heart disease. N. Engl. J. Med.331:489–495, 1994.

    Google Scholar 

  33. Tada, S., and J. M. Tarbell. Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations). AJP-Heart Circ. Physiol.282:H576–H584, 2002.

    Google Scholar 

  34. Tardy, Y., N. Resnick, T. Nagel, M. A. Gimbrone, and C. F. Dewey. Shear stress gradients remodel endothelial monolayers via a cell proliferation-migration-loss cycle. Arterioscler., Thromb., Vasc. Biol.17:3102–3106, 1997.

    Google Scholar 

  35. Tominaga, R., H. E. Kambic, H. Emoto, H. Harasaki, C. Sutton, and J. Hollman. Effects of design geometry of intravascular endoprostheses on stenosis rate in normal rabbits. Am. Heart J.123:21–28, 1992.

    Google Scholar 

  36. Tritton, D. J. Physical Fluid Dynamics. Oxford: Clarendon, 1988.

    Google Scholar 

  37. van Beusekom, H. M., D. M. Whelan, S. H. Hofma, S. C. Krabbendam, V. W. van Hinsbergh, P. D. Verdouw, and W. J. van der Giessen. Long-term endothelial dysfunction is more pronounced after stenting than after balloon angioplasty in porcine coronary arteries. J. Am. Coll. Cardiol.32:1109–1117, 1998.

    Google Scholar 

  38. Van Dyke, M. An Album of Fluid Motion. Stanford: Parabolic, 1982.

    Google Scholar 

  39. Vrints, C. J., M. J. Claeys, J. Bosmans, V. Conraads, and J. P. Snoeck. Effect of stenting on coronary flow velocity reserve: Comparison of coil and tubular stents. Heart82:465–470, 1999.

    Google Scholar 

  40. Wentzel, J. J., R. Krams, J. C. H. Schuurbiers, J. A. Oomen, J. Kloet, W. J. van der Giessen, P. W. Serruys, and C. J. Slager. Relationship between neointimal thickness and shear stress after wallstent implantation in human coronary arteries. Circulation103:1740–1745, 2001.

    Google Scholar 

  41. Wentzel, J. J., D. M. Whelan, W. J. van der Giessen, H. M. van Beusekom, I. Andhyiswara, P. W. Serruys, C. J. Slager, and R. Krams. Coronary stent implantation changes 3D vessel geometry and 3D shear stress distribution. J. Biomech.33:1287–1295, 2000.

    Google Scholar 

  42. Yoshitomi, Y., S. Kojima, M. Yano, T. Sugi, Y. Matsumoto, M. Saotome, K. Tanaka, M. Endo, and M. Kuramochi. Does stent design affect probability of restenosis? A randomized trial comparing Multilink stents with GFX stents. Am. Heart J.142:445–451, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaDisa, J.F., Guler, I., Olson, L.E. et al. Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation. Annals of Biomedical Engineering 31, 972–980 (2003). https://doi.org/10.1114/1.1588654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1588654

Navigation