Next Article in Journal
Correction of Gradient Nonlinearity Bias in Quantitative Diffusion Parameters of Renal Tissue with Intravoxel Incoherent Motion
Previous Article in Journal
Feasibility of Imaging Tissue Electrical Conductivity by Switching Field Gradients with MRI
 
 
Tomography is published by MDPI from Volume 7 Issue 1 (2021). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Grapho, LLC.
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Simultaneous T1 and T2 Brain Relaxometry in Asymptomatic Volunteers Using Magnetic Resonance Fingerprinting

by
Chaitra Badve
1,
Alice Yu
2,
Matthew Rogers
2,
Dan Ma
3,
Yiying Liu
4,
Mark Schluchter
4,
Jeffrey Sunshine
1,
Mark Griswold
1,3 and
Vikas Gulani
1,3,5,*
1
Department of Radiology, Case Western Reserve University and University Hospitals, Cleveland, OH, USA
2
School of Medicine, Case Western Reserve University, Cleveland, OH, USA
3
Department of Biomedical Engineering, Case Western Reserve University and University Hospitals, Cleveland, OH, USA
4
Department of Biostatistics and Bioinformatics Core, Case Western Reserve University and University Hospitals, Cleveland, OH, USA
5
Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Ave, Cleveland, OH 44106, USA
*
Author to whom correspondence should be addressed.
Tomography 2015, 1(2), 136-144; https://doi.org/10.18383/j.tom.2015.00166
Submission received: 5 September 2015 / Revised: 6 October 2015 / Accepted: 7 November 2015 / Published: 1 December 2015

Abstract

Magnetic resonance fingerprinting (MRF) is an imaging tool that produces multiple magnetic resonance imaging parametric maps from a single scan. Herein we describe the normal range and progression of MRF-derived relaxometry values with age in healthy individuals. In total, 56 normal volunteers (24 men and 32 women) aged 11–71 years were scanned. Regions of interest were drawn on T1 and T2 maps in 38 areas, including lobar and deep white matter (WM), deep gray nuclei, thalami, and posterior fossa structures. Relaxometry differences were assessed using a forward stepwise selection of a baseline model that included either sex, age, or both, where variables were included if they contributed significantly (p < 0.05). In addition, differences in regional anatomy, including comparisons between hemispheres and between anatomical subcomponents, were assessed by paired t tests. MRF-derived T1 and T2 in frontal WM regions increased with age, whereas occipital and temporal regions remained relatively stable. Deep gray nuclei such as substantia nigra, were found to have agerelated decreases in relaxometry. Differences in sex were observed in T1 and T2 of temporal regions, the cerebellum, and pons. Men were found to have more rapid age-related changes in frontal and parietal WM. Regional differences were identified between hemispheres, between the genu and splenium of the corpus callosum, and between posteromedial and anterolateral thalami. In conclusion, MRF quantification measures relaxometry trends in healthy individuals that are in agreement with the current understanding of neurobiology and has the ability to uncover additional patterns that have not yet been explored.
Keywords: aging; T1 mapping; T2 mapping; magnetic resonance fingerprinting; relaxometry aging; T1 mapping; T2 mapping; magnetic resonance fingerprinting; relaxometry

Share and Cite

MDPI and ACS Style

Badve, C.; Yu, A.; Rogers, M.; Ma, D.; Liu, Y.; Schluchter, M.; Sunshine, J.; Griswold, M.; Gulani, V. Simultaneous T1 and T2 Brain Relaxometry in Asymptomatic Volunteers Using Magnetic Resonance Fingerprinting. Tomography 2015, 1, 136-144. https://doi.org/10.18383/j.tom.2015.00166

AMA Style

Badve C, Yu A, Rogers M, Ma D, Liu Y, Schluchter M, Sunshine J, Griswold M, Gulani V. Simultaneous T1 and T2 Brain Relaxometry in Asymptomatic Volunteers Using Magnetic Resonance Fingerprinting. Tomography. 2015; 1(2):136-144. https://doi.org/10.18383/j.tom.2015.00166

Chicago/Turabian Style

Badve, Chaitra, Alice Yu, Matthew Rogers, Dan Ma, Yiying Liu, Mark Schluchter, Jeffrey Sunshine, Mark Griswold, and Vikas Gulani. 2015. "Simultaneous T1 and T2 Brain Relaxometry in Asymptomatic Volunteers Using Magnetic Resonance Fingerprinting" Tomography 1, no. 2: 136-144. https://doi.org/10.18383/j.tom.2015.00166

Article Metrics

Back to TopTop