Skip to main content
Log in

Candidate Mechanisms for Regression of Coronary Atherosclerosis with High-Dose Statins

Insight from Intravascular Ultrasonography Trials

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Animal models and serial imaging studies in humans have shown that atherosclerosis is a potentially reversible disease. Several drug classes have been tested to determine whether they can promote reversal of atherosclerosis. Of these, HMG-CoA reductase inhibitors (statins) have been consistently proven to have anti-atherosclerotic effects in large-scale clinical trials. In this article, we review the lipid- and non-lipid-based mechanisms of statin-induced disease regression using the information provided by the recent intravascular ultrasonography trials. We conclude that, despite several potential mechanisms, reduction of low-density lipoprotein cholesterol appears to be the dominant mechanism responsible for regression of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 2004; 291(9): 1071–80.

    Article  PubMed  CAS  Google Scholar 

  2. Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 2006; 295(13): 1556–65.

    Article  PubMed  CAS  Google Scholar 

  3. Crouse 3rd JR, Raichlen JS, Riley WA, et al. Effect of rosuvastatin on progression of carotid intima-media thickness in low-risk individuals with subclinical atherosclerosis: the METEOR Trial. JAMA 2007; 297(12): 1344–53.

    Article  PubMed  CAS  Google Scholar 

  4. Okazaki S, Yokoyama T, Miyauchi K, et al. Early statin treatment in patients with acute coronary syndrome: demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the ESTABLISH Study. Circulation 2004; 110(9): 1061–8.

    Article  PubMed  CAS  Google Scholar 

  5. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344 (8934): 1383–9.

  6. LaRosa JC, Grundy SM, Waters DD, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med 2005; 352(14): 1425–35.

    Article  PubMed  CAS  Google Scholar 

  7. Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 1995; 333(20): 1301–7.

    Article  PubMed  CAS  Google Scholar 

  8. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998; 279(20): 1615–22.

    Article  PubMed  CAS  Google Scholar 

  9. Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 2003; 361(9364): 1149–58.

    Article  PubMed  CAS  Google Scholar 

  10. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004; 110(2): 227–39.

    Article  PubMed  Google Scholar 

  11. Ito MK, Talbert RL, Tsimikas S. Statin-associated pleiotropy: possible beneficial effects beyond cholesterol reduction. Pharmacotherapy 2006; 26 (7 Pt 2): 85–97; discussion 8S-101S.

    Article  Google Scholar 

  12. Nissen SE, Tuzcu EM, Libby P, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA 2004; 292(18): 2217–25.

    Article  PubMed  CAS  Google Scholar 

  13. Nissen SE, Tuzcu EM, Brewer HB, et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med 2006; 354(12): 1253–63.

    Article  PubMed  CAS  Google Scholar 

  14. Nissen SE, Tardif JC, Nicholls SJ, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med 2007; 356(13): 1304–16.

    Article  PubMed  CAS  Google Scholar 

  15. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007; 357(21): 2109–22.

    Article  PubMed  CAS  Google Scholar 

  16. Sipahi I, Nicholls SJ, Tuzcu EM, et al. Coronary atherosclerosis can regress with very intensive statin therapy. Cleve Clin J Med 2006 Oct; 73(10): 937–44.

    Article  PubMed  Google Scholar 

  17. Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004; 350(15): 1495–504.

    Article  PubMed  CAS  Google Scholar 

  18. Nicholls SJ, Tuzcu EM, Sipahi I, et al. Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA 2007; 297(5): 499–508.

    Article  PubMed  CAS  Google Scholar 

  19. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001; 285(19): 2486–97.

    Article  Google Scholar 

  20. Brunzell JD. Clinical practice: hypertriglyceridemia. N Engl J Med 2007; 357(10): 1009–17.

    Article  PubMed  CAS  Google Scholar 

  21. Ridker PM, Hennekens CH, Stampfer MJ. A prospective study of lipoprotein(a) and the risk of myocardial infarction. JAMA 1993; 270(18): 2195–9.

    Article  PubMed  CAS  Google Scholar 

  22. Schaefer EJ, Lamon-Fava S, Jenner JL, et al. Lipoprotein(a) levels and risk of coronary heart disease in men: the lipid Research Clinics Coronary Primary Prevention Trial. JAMA 1994; 271(13): 999–1003.

    Article  PubMed  CAS  Google Scholar 

  23. Nguyen TT, Ellefson RD, Hodge DO, et al. Predictive value of electrophoretically detected lipoprotein(a) for coronary heart disease and cerebrovascular disease in a community-based cohort of 9936 men and women. Circulation 1997; 96(5): 1390–7.

    Article  PubMed  CAS  Google Scholar 

  24. Ariyo AA, Thach C, Tracy R. Lp(a) lipoprotein, vascular disease, and mortality in the elderly. N Engl J Med 2003; 349(22): 2108–15.

    Article  PubMed  CAS  Google Scholar 

  25. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med 2005; 352(1): 29–38.

    Article  PubMed  CAS  Google Scholar 

  26. Ridker PM, Cannon CP, Morrow D, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med 2005; 352(1): 20–8.

    Article  PubMed  CAS  Google Scholar 

  27. Kinlay S. Low-density lipoprotein-dependent and -independent effects of cholesterol-lowering therapies on C-reactive protein: a meta-analysis. J Am Coll Cardiol 2007; 49(20): 2003–9.

    Article  PubMed  CAS  Google Scholar 

  28. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316(22): 1371–5.

    Article  PubMed  CAS  Google Scholar 

  29. Burke AP, Kolodgie FD, Farb A, et al. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 2002; 105(3): 297–303.

    Article  PubMed  Google Scholar 

  30. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation 2002; 105(8): 939–43.

    Article  PubMed  Google Scholar 

  31. Schoenhagen P, Ziada KM, Kapadia SR, et al. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation 2000; 101(6): 598–603.

    Article  PubMed  CAS  Google Scholar 

  32. Jeremias A, Spies C, Herity NA, et al. Coronary artery compliance and adaptive vessel remodelling in patients with stable and unstable coronary artery disease. Heart 2000; 84(3): 314–9.

    Article  PubMed  CAS  Google Scholar 

  33. Rodriguez-Granillo GA, Serruys PW, Garcia-Garcia HM, et al. Coronary artery remodelling is related to plaque composition. Heart 2006; 92(3): 388–91.

    Article  PubMed  CAS  Google Scholar 

  34. Mintz GS, Kent KM, Pichard AD, et al. Contribution of inadequate arterial remodeling to the development of focal coronary artery stenoses. An intravascular ultrasound study. Circulation 1997; 95(7): 1791–8.

    Article  PubMed  CAS  Google Scholar 

  35. Schoenhagen P, Tuzcu EM, Apperson-Hansen C, et al. Determinants of arterial wall remodeling during lipid-lowering therapy: serial intravascular ultrasound observations from the Reversal of Atherosclerosis with Aggressive Lipid Lowering Therapy (REVERSAL) trial. Circulation 2006; 113(24): 2826–34.

    Article  PubMed  CAS  Google Scholar 

  36. Milionis HJ, Liberopoulos EN, Achimastos A, et al. Statins: another class of antihypertensive agents? J Hum Hypertens 2006; 20(5): 320–35.

    Article  PubMed  CAS  Google Scholar 

  37. Glorioso N, Troffa C, Filigheddu F, et al. Effect of the HMG-CoA reductase inhibitors on blood pressure in patients with essential hypertension and primary hypercholesterolemia. Hypertension 1999; 34(6): 1281–6.

    Article  PubMed  CAS  Google Scholar 

  38. Borghi C, Dormi A, Veronesi M, et al. Association between different lipid-lowering treatment strategies and blood pressure control in the Brisighella Heart Study. Am Heart J 2004; 148(2): 285–92.

    Article  PubMed  CAS  Google Scholar 

  39. King DE, Mainous3rd AG, Egan BM, et al. Use of statins and blood pressure. Am J Hypertens 2007; 20(9): 937–41.

    Article  PubMed  CAS  Google Scholar 

  40. Sipahi I, Tuzcu EM, Schoenhagen P, et al. Effects of normal, pre-hypertensive, and hypertensive blood pressure levels on progression of coronary atherosclerosis. J Am Coll Cardiol 2006; 48(4): 833–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. Dr Sipahi has received educational grants and honoraria for lectures from Pfizer Inc. Dr Tuzcu has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ilke Sipahi or E. Murat Tuzcu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipahi, I., Tuzcu, E.M. Candidate Mechanisms for Regression of Coronary Atherosclerosis with High-Dose Statins. Am J Cardiovasc Drugs 8, 365–371 (2008). https://doi.org/10.2165/0129784-200808060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/0129784-200808060-00003

Keywords

Navigation