Post mortem studies in Parkinson's disease--is it possible to detect brain areas for specific symptoms?

J Neural Transm Suppl. 1999:56:1-29. doi: 10.1007/978-3-7091-6360-3_1.

Abstract

Parkinson's disease (PD) is characterized by progressive neuronal loss associated with Lewy bodies in many subcortical nuclei leading to multiple biochemical and pathophysiological changes of clinical relevance. Loss of nigral neurons causing striatal dopamine deficiency is related to both the duration and clinical stages (severity) of the disease. The clinical subtypes of PD have different morphological lesion patterns: a) The akinetic-rigid type shows more severe cell loss in the ventrolateral part of substantia nigra zona compacta (SNZC) that projects to the dorsal putamen than the medial part projecting to caudate nucleus and anterior putamen, with negative correlation between SNZC cell counts, severity of akinesia-rigidity, and dopamine loss in the posterior putamen. Reduced dopaminergic input causes overactivity of the GABA ergic inhibitory striatal neurons projecting via the "indirect loop" to SN zona reticulata (SNZR) and medial pallidum (GPI) leading to inhibition of the glutamatergic thalamo-cortical motor loop and reduced cortical activation. b) The tremor-dominant type shows more severe neuron loss in medial than in lateral SNZC and damage to the retrorubral field A8 containing only few tyrosine hydroxylase and dopamine transporter immunoreactive (IR) neurons but mainly calretinin-IR cells. A8 that is rather preserved in rigid-akinetic PD (protective role of calcium-binding protein?) projects to the matrix of dorsolateral striatum and ventromedial thalamus. Together with area A10 it influences the strial efflux via SNZR to thalamus and from there to prefrontal cortex. Rest tremor in PD is associated with increased metabolism in the thalamus, subthalamus, pons, and premotor-cortical network suggesting an increased functional activity of thalamo-motor projections. In essential tremor, no significant pathomorphological changes but overactivity of cerebello-thalamic loop have been observed. c) In the akinetic-rigid forms of multisystem atrophy, degeneration is more severe in the lateral SNZC with severe loss of calbindin-IR cells reflecting initial degeneration of the striatal matrix in the caudal putamen with transsynaptic degeneration of striatonigral efferences that remain intact in PD. This fact and loss of striatal D2 receptors--as in advanced stages of PD--are reasons for negative response to L-dopa substitution. These data suggest different pathophysiological mechanisms of the clinical subtypes of PD that have important therapeutic implications. d) Involvement of extranigral structures in PD includes the mesocortical dopaminergic system, the noradrenergic locus coeruleus, dorsal vagal nucleus and medullary nuclei, serotonergic dorsal raphe, nucleus basalis of Meynert and other cholinergic brainstem nuclei, e.g. Westphal-Edinger nucleus (controlling pupillomotor function), posterolateral hypothalamus and the limbic system, e.g. amygdaloid nucleus, part of hippocampal formation, limbic thalamic nuclei with prefrontal projections, etc. Damage to multiple neuronal systems by the progressing degenerative process causing complex biochemical changes may explain the variable clinical picture of PD including vegetative, behavioural and cognitive dysfunctions, depression, pharmacotoxic psychoses, etc. Future comparative clinico-morphological and pathobiochemical studies will further elucidate the pathophysiological basis of specific clinical symptoms of PD and related disorders providing a broader basis for effective treatment strategies. Parkinson's disease (PD) is characterized by progressive degeneration of the nigrostriatal dopaminergic system and other subcortical neuronal systems leading to striatal dopamine deficiency and other biochemical deficits related to the variable clinical signs and symptoms of the disorder. (ABSTRACT TRUNCATED)

Publication types

  • Review

MeSH terms

  • Animals
  • Brain / pathology*
  • Humans
  • Parkinson Disease / pathology*