Visual processing in infants and children studied using functional MRI

Pediatr Res. 1999 Aug;46(2):135-40. doi: 10.1203/00006450-199908000-00001.

Abstract

We studied the development of visual processing in 58 children, ranging from 1 d to 12 y of age (median age 29 mo), using functional magnetic resonance imaging. All but nine children had either been sedated using chloral hydrate (n = 12) or pentobarbital (n = 28). Nine children were studied under a full halothane/ N2O:O2 anesthesia. In the first postnatal month, 30% of the neonates showed a positive blood oxygenation level-dependent (BOLD) contrast signal, whereas, for infants between the ages of 1 mo and 1 y, 27% did so. Thirty-one percent of children between 1 and 6 y of age and 71% of children aged 6 y and above showed a positive BOLD contrast signal change to our visual stimulation paradigm. Besides the usual positive BOLD contrast signal change, we also noted that a large portion of the children measured displayed a negative BOLD contrast signal change. This negative BOLD contrast signal change was observed in 30% of children up to 1 mo of age, in 27% between 1 mo and 1 y of age, in 47% between 1 and 6 y of age, and in 14% of children 6 y and older. In the children in which we observed a negative correlating BOLD contrast signal change, the locus was more anterior and more lateral than the positive BOLD contrast signal, placing it in the secondary visual cortical area. The results indicate that when using functional magnetic resonance imaging on children, the primary visual cortical area does not respond functionally in the same manner as that of the adult until 1.5 y of age. This supports earlier clinical and electrophysiologic findings that different cortical mechanisms seem to contribute to visual perception at different times postnatally.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Cerebrovascular Circulation
  • Child
  • Child, Preschool
  • Humans
  • Infant
  • Magnetic Resonance Imaging
  • Oxygen / blood
  • Visual Cortex / blood supply*
  • Visual Cortex / metabolism
  • Visual Cortex / physiology*
  • Visual Perception / physiology*

Substances

  • Oxygen