Resuscitative hypothermia protects the neonatal rat brain from hypoxic-ischemic injury

Brain Pathol. 2000 Jan;10(1):61-71. doi: 10.1111/j.1750-3639.2000.tb00243.x.

Abstract

The effect of 24 h of hypothermic recovery on moderate hypoxic-ischemic brain damage in P7-rats was investigated for 42 d after the insult, using magnetic resonance and histopathology. Occlusion of right common carotid artery and 90 min exposure to 8% O2 at 37 degrees C body temperature produced cytotoxic edema of 51(+/-11)% brain volume (BV) and depression of brain energy metabolism (PCr/Pi) from 1.43(+/-0.21) to 0.14(+/-0.11). During recovery, the body temperature was reduced to 30 degrees C for 24 h in 36 animals, but was kept at 37 degrees C in 34 animals. The edema waned upon reoxygenation leaving only the core lesion at 2 h, but reappeared reaching a maximal extent of 11+/-8% BV under hypothermia compared to 45(+/-10)% under normothermia at around 24 h. PCr/Pi recovered transiently within 13 h and declined again to 1.07(+/-0.19) under hypothermia and to 0.48(+/-0.22) under normothermia at around 24 h. Hypothermia led to significant long term brain protection, leaving permanent tissue damage of 12(+/-6)% BV compared to 35(+/-12)% BV under normothermia. However, animals with severe initial injury developed large infarctions, despite hypothermic treatment. Even then, the time to develop infarction was significantly prolonged, leaving the opportunity for additional therapeutic intervention.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Brain / pathology
  • Brain / physiopathology*
  • Brain Edema / etiology
  • Hypothermia, Induced*
  • Hypoxia-Ischemia, Brain / pathology
  • Hypoxia-Ischemia, Brain / physiopathology
  • Hypoxia-Ischemia, Brain / therapy*
  • Magnetic Resonance Imaging
  • Rats
  • Rats, Sprague-Dawley