How hyperglycemia promotes atherosclerosis: molecular mechanisms

Cardiovasc Diabetol. 2002 Apr 8:1:1. doi: 10.1186/1475-2840-1-1.

Abstract

Both type I and type II diabetes are powerful and independent risk factors for coronary artery disease (CAD), stroke, and peripheral arterial disease. Atherosclerosis accounts for virtually 80% of all deaths among diabetic patients. Prolonged exposure to hyperglycemia is now recognized a major factor in the pathogenesis of atherosclerosis in diabetes. Hyperglycemia induces a large number of alterations at the cellular level of vascular tissue that potentially accelerate the atherosclerotic process. Animal and human studies have elucidated three major mechanisms that encompass most of the pathological alterations observed in the diabetic vasculature: 1) Nonenzymatic glycosylation of proteins and lipids which can interfere with their normal function by disrupting molecular conformation, alter enzymatic activity, reduce degradative capacity, and interfere with receptor recognition. In addition, glycosylated proteins interact with a specific receptor present on all cells relevant to the atherosclerotic process, including monocyte-derived macrophages, endothelial cells, and smooth muscle cells. The interaction of glycosylated proteins with their receptor results in the induction of oxidative stress and proinflammatory responses 2) oxidative stress 3) protein kinase C (PKC) activation with subsequent alteration in growth factor expression. Importantly, these mechanisms may be interrelated. For example, hyperglycemia-induced oxidative stress promotes both the formation of advanced glycosylation end products and PKC activation.