Endoscopic third ventriculostomy in the management of obstructive hydrocephalus: an outcome analysis

J Neurosurg. 2004 Apr;100(4):626-33. doi: 10.3171/jns.2004.100.4.0626.

Abstract

Object: The purpose of this paper is to elucidate the safety and efficacy of, and indications and outcome prognosis for endoscopic third ventriculostomy (ETV) in 58 patients with obstructive hydrocephalus.

Methods: Between September 1999 and April 2003, 58 ETVs were performed in 58 patients with obstructive hydrocephalus (36 male and 22 female patients) at the authors' institution. The ages of the patients ranged from 5 to 67 years (mean age 35 years) and the follow-up period ranged from 3 to 41 months (mean duration of follow up 24 months). Patients were divided into four subgroups based on the cause of the obstructive hydrocephalus: 21 with intracranial tumors; 11 with intracranial cysts; 18 with aqueductal stenosis: and eight with intracranial hemorrhage or infection. Both univariate and multivariate statistical analyses were performed to assess the prognostic relevance of the cause of the obstructive hydrocephalus, early postoperative clinical appearance, and neuroimaging findings in predicting the result of the ETV. The survival rate was 87% at the end of the 1st year and 84% at the end of the 2nd year post-ETV. One month after ETV an overall clinical improvement was observed in 45 (77.6%) of 58 patients. If we also consider the successful revision of ETV in two patients, a success rate of 78.3% (47 of 60 patients) was reached. The ETV was successful in 17 (81%) of 21 patients with intracranial tumors, nine (82%) of 11 with cystic lesions, 16 (88.9%) of 18 with aqueductal stenosis, and three (38%) of eight with intracranial hemorrhage or infection. A Kaplan-Meier analysis illustrates that the percentage of functioning ETVs stabilizes between 75 and 80% 1 year after the operation. In a comparison of results 1 year after ETV, the authors found that the aqueductal stenosis subgroup had the highest proportion of functioning ETV (89%). The proportions of the tumor and cyst subgroups were 84 and 82%, respectively, whereas the proportion was only 50% in the ventriculitis/intracranial hemorrhage subgroup (strata log-rank test: chi2 = 7.93, p = 0.0475). In the present study, ETV failed in eight patients (13.8%) and the time to failure after the procedure was a mean of 3.4 months (median 2 months, range 0-8 months). The logistic regression analysis confirmed an early postoperative improvement (within 2 weeks after ETV, significance [Sig] of log likelihood ratio [LLR] < 0.0001) and a patent stoma on cine phase-contrast magnetic resonance (MR) images (Sig of LLR = 0.0002) were significant prognostic factors for a successful ETV. The results demonstrated the multivariate model (B = -53.7309, standard error = 325.1732, Wald = 0.0273, Sig = 0.8688) could predict a correct result in terms of success or failure from ETV surgery in 89.66% of observed cases. The Pearson chi-square test demonstrated that little reliance could be placed on the finding of a reduced size of the lateral ventricle (chi2 = 5.305, p = 0.07) on neuroimaging studies within 2 weeks after ETV, but it became a significant predictive factor at 3 months (chi2 = 8.992, p = 0.011) and 6 months (chi2 = 10.586, p = 0.005) post-ETV. Major complications occurred in seven patients (12.1%), including intraoperative venous bleeding in three, arterial bleeding in one, and occlusion of the stoma in three patients. The overall mortality rate was 10.3% (six patients). One of these patients died of pulmonary infection and another of ventriculitis. Four additional patients died of progression of malignant tumor during the follow-up period.

Conclusions: The results indicate that ETV is a most effective treatment in cases of obstructive hydrocephalus that is caused by aqueductal stenosis and space-occupying lesions. For patients with infections or intraventricular bleeding, ETV has considerable effects in selected cases with confirmed CSF dynamic studies. Early clinical and cine phase-contrast MR imaging findings after the operation play an important role in predicting patient outcomes after ETV. The predictive value of an alteration in ventricle size, especially during the early stage following ETV, is unsatisfactory. Seventy-five percent of ETV failures occur within 6 months after surgery. A repeated ventriculostomy should be considered to be a sufficient treatment option in cases in which stoma dysfunction is suspected.

MeSH terms

  • Adolescent
  • Adult
  • Child
  • Child, Preschool
  • Comorbidity
  • Female
  • Humans
  • Hydrocephalus / surgery*
  • Male
  • Middle Aged
  • Patient Selection
  • Prognosis
  • Retrospective Studies
  • Third Ventricle / surgery*
  • Treatment Outcome
  • Ventriculostomy / methods*