The Role of 3 Tesla MRA in the Detection of Intracranial Aneurysms

Int J Vasc Med. 2012:2012:792834. doi: 10.1155/2012/792834. Epub 2012 Jan 16.

Abstract

Intracranial aneurysms constitute a common pathological entity, affecting approximately 1-8% of the general population. Their early detection is essential for their prompt treatment. Digital subtraction angiography is considered the imaging method of choice. However, other noninvasive methodologies such as CTA and MRA have been employed in the investigation of patients with suspected aneurysms. MRA is a noninvasive angiographic modality requiring no radiation exposure. However, its sensitivity and diagnostic accuracy were initially inadequate. Several MRA techniques have been developed for overcoming all these drawbacks and for improving its sensitivity. 3D TOF MRA and contrast-enhanced MRA are the most commonly employed techniques. The introduction of 3 T magnetic field further increased MRA's sensitivity, allowing detection of aneurysms smaller than 3 mm. The development of newer MRA techniques may provide valuable information regarding the flow characteristics of an aneurysm. Meticulous knowledge of MRA's limitations and pitfalls is of paramount importance for avoiding any erroneous interpretation of its findings.