Evaluation of techniques for slice sensitivity profile measurement and analysis

J Appl Clin Med Phys. 2014 Mar 6;15(2):4042. doi: 10.1120/jacmp.v15i2.4042.

Abstract

The purpose of this study was to compare the resulting full width at half maximum of slice sensitivity profiles (SSP) generated by several commercially available point response phantoms, and determine an appropriate imaging technique and analysis method. Four CT phantoms containing point response objects designed to produce a delta impulse signal used in this study: a Fluke CT-SSP phantom, a Gammex 464, a CatPhan 600, and a Kagaku Micro Disc phantom. Each phantom was imaged using 120 kVp, 325 mAs, head scan field of view, 32 × 0.625 mm helical scan with a 20 mm beam width and a pitch of 0.969. The acquired images were then reconstructed into all available slice thicknesses (0.625 mm - 5.0 mm). A computer program was developed to analyze the images of each dataset for generating a SSP from which the full width at half maximum (FWHM) was determined. Two methods for generating SSPs were evaluated and compared by choosing the mean vs. maximum value in the ROI, along with two methods for evaluating the FWHM of the SSP, linear interpolation and Gaussian curve fitting. FWHMs were compared with the manufacturer's specifications using percent error and z-test with a significance value of p < 0.05. The FWHMs from each phantom were not significantly different (p ≥ 0.089) with an average error of 3.5%. The FWHMs from SSPs generated from the mean value were statistically different (p ≤ 3.99 × 10¹³). The FWHMs from the different FWHM methods were not statistically different (p ≤ 0.499). Evaluation of the SSP is dependent on the ROI value used. The maximum value from the ROI should be used to generate the SSP whenever possible. SSP measurement is independent of the phantoms used in this study.

Publication types

  • Evaluation Study

MeSH terms

  • Algorithms
  • Humans
  • Normal Distribution
  • Phantoms, Imaging
  • Radiographic Image Enhancement / methods*
  • Radiographic Image Interpretation, Computer-Assisted / methods
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Software
  • Tomography, X-Ray Computed / methods*