Effectiveness of a Rapid Lumbar Spine MRI Protocol Using 3D T2-Weighted SPACE Imaging Versus a Standard Protocol for Evaluation of Degenerative Changes of the Lumbar Spine

AJR Am J Roentgenol. 2016 Sep;207(3):614-20. doi: 10.2214/AJR.15.15764. Epub 2016 Jun 8.

Abstract

Objective: Reducing lumbar spine MRI scanning time while retaining diagnostic accuracy can benefit patients and reduce health care costs. This study compares the effectiveness of a rapid lumbar MRI protocol using 3D T2-weighted sampling perfection with application-optimized contrast with different flip-angle evolutions (SPACE) sequences with a standard MRI protocol for evaluation of lumbar spondylosis.

Materials and methods: Two hundred fifty consecutive unenhanced lumbar MRI examinations performed at 1.5 T were retrospectively reviewed. Full, rapid, and complete versions of each examination were interpreted for spondylotic changes at each lumbar level, including herniations and neural compromise. The full examination consisted of sagittal T1-weighted, T2-weighted turbo spin-echo (TSE), and STIR sequences; and axial T1- and T2-weighted TSE sequences (time, 18 minutes 40 seconds). The rapid examination consisted of sagittal T1- and T2-weighted SPACE sequences, with axial SPACE reformations (time, 8 minutes 46 seconds). The complete examination consisted of the full examination plus the T2-weighted SPACE sequence. Sensitivities and specificities of the full and rapid examinations were calculated using the complete study as the reference standard.

Results: The rapid and full studies had sensitivities of 76.0% and 69.3%, with specificities of 97.2% and 97.9%, respectively, for all degenerative processes. Rapid and full sensitivities were 68.7% and 66.3% for disk herniation, 85.2% and 81.5% for canal compromise, 82.9% and 69.1% for lateral recess compromise, and 76.9% and 69.7% for foraminal compromise, respectively.

Conclusion: Isotropic SPACE T2-weighted imaging provides high-quality imaging of lumbar spondylosis, with multiplanar reformatting capability. Our SPACE-based rapid protocol had sensitivities and specificities for herniations and neural compromise comparable to those of the protocol without SPACE. This protocol fits within a 15-minute slot, potentially reducing costs and discomfort for a large subgroup of patients.

Keywords: 3D imaging; MRI; spine; spondylosis.

Publication types

  • Comparative Study

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Female
  • Humans
  • Image Interpretation, Computer-Assisted
  • Imaging, Three-Dimensional / methods*
  • Lumbar Vertebrae*
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Retrospective Studies
  • Spondylosis / diagnostic imaging*