18F-FDG PET-CT pattern in idiopathic normal pressure hydrocephalus

Neuroimage Clin. 2018 Feb 28:18:897-902. doi: 10.1016/j.nicl.2018.02.031. eCollection 2018.

Abstract

Background: Idiopathic normal pressure hydrocephalus (iNPH) is an important and treatable cause of neurologic impairment. Diagnosis is complicated due to symptoms overlapping with other age related disorders. The pathophysiology underlying iNPH is not well understood. We explored FDG-PET abnormalities in iNPH patients in order to determine if FDG-PET may serve as a biomarker to differentiate iNPH from common neurodegenerative disorders.

Methods: We retrospectively compared 18F-FDG PET-CT imaging patterns from seven iNPH patients (mean age 74 ± 6 years) to age and sex matched controls, as well as patients diagnosed with clinical Alzheimer's disease dementia (AD), Dementia with Lewy Bodies (DLB) and Parkinson's Disease Dementia (PDD), and behavioral variant frontotemporal dementia (bvFTD). Partial volume corrected and uncorrected images were reviewed separately.

Results: Patients with iNPH, when compared to controls, AD, DLB/PDD, and bvFTD, had significant regional hypometabolism in the dorsal striatum, involving the caudate and putamen bilaterally. These results remained highly significant after partial volume correction.

Conclusions: In this study, we report a FDG-PET pattern of hypometabolism in iNPH involving the caudate and putamen with preserved cortical metabolism. This pattern may differentiate iNPH from degenerative diseases and has the potential to serve as a biomarker for iNPH in future studies. These findings also further our understanding of the pathophysiology underlying the iNPH clinical presentation.

Keywords: Biomarker; Caudate; FDG-PET; Hypometabolism; Normal pressure hydrocephalus.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Alzheimer Disease / diagnostic imaging
  • Alzheimer Disease / metabolism
  • Female
  • Fluorodeoxyglucose F18 / metabolism*
  • Frontotemporal Dementia / diagnostic imaging*
  • Humans
  • Hydrocephalus, Normal Pressure / pathology*
  • Lewy Body Disease / metabolism*
  • Male
  • Middle Aged
  • Positron Emission Tomography Computed Tomography / methods
  • Positron-Emission Tomography / methods

Substances

  • Fluorodeoxyglucose F18