Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity

Ann Biomed Eng. 1997 May-Jun;25(3):460-9. doi: 10.1007/BF02684187.

Abstract

Recent developments in minimally invasive approach to cerebrovascular diseases include the placement of stents in arteries for treatment of aneurysms. Preliminary clinical observations and experimental studies have shown that intravascular stents traversing the orifice may lead to thrombosis and subsequent occlusion of the aneurysm. The alterations in vessel local hemodynamics due to the introduction of a stent are not yet well understood. We investigated changes in local hemodynamics resulting from stent implantation. Pulsatile flow patterns in an experimental flow apparatus were visualized using laser-induced fluorescence of rhodamine dye. The test cells were constructed in a rectangular shape to facilitate an undisturbed longitudinal view of flow patterns in parent vessel and aneurysm models with and without porous stents. Woven nitinol stents of various porosities (76%, 80%, 82%, and 85%) were investigated. The selected fluid dynamic similarity parameters (Reynolds and Womersley numbers) represented conditions usually found in high-flow, larger arteries in humans (such as the carotid artery) and low-flow, smaller arteries (such as the vertebral artery). The mean Reynolds number for the larger arteries was 180, with maximum/minimum values of 490/-30 and the Womersley number was 5.3. The mean Reynolds number for the smaller arteries was 90, with maximum/minimum values of 230/2, and the Womersley number was 2.7. For the larger arteries modeled, placement of a stent of the lowest porosity across the aneurysm orifice resulted in reduction of aneurysmal vortex speed and decreased interaction with parent vessel flow. For smaller arteries, a stent of the same porosity led to a substantial reduction of parent vessel/aneurysmal flow interaction and the appearance of a nonrecirculating crescent of fluid rich in rhodamine dye in the aneurysm dome. Our results can help explain in vivo thrombus formation within an aneurysm after placement of a stent that is compatible with local hemodynamics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fluorescent Dyes
  • Hemodynamics / physiology*
  • Humans
  • Intracranial Aneurysm / physiopathology
  • Intracranial Aneurysm / therapy*
  • Lasers
  • Models, Biological*
  • Porosity
  • Rheology / instrumentation
  • Stents*

Substances

  • Fluorescent Dyes