Stimulation of tumour angiogenesis by proximal wounds: spatial and temporal analysis by MRI

Br J Cancer. 1998;77(3):440-7. doi: 10.1038/bjc.1998.70.

Abstract

We show here, using high-resolution magnetic resonance imaging, that injured tissue provides a favourable milieu for the neovascularization and growth of C6 glioma spheroids, implanted subcutaneously in nude mice. Moreover, the presence of micro-tumours in an injured tissue inhibited the healing process, leaving an open persistent wound. In correlation with the induced angiogenesis of implanted spheroids in the presence of proximal wounds, a shorter lag period was observed for initiation of tumour growth. This effect was restricted spatially and was observed only for wounds within 5 mm from the tumour. In such proximal wounds, angiogenesis was enhanced in the first days after injury, and vessel regression, which normally starts 4 days after injury, did not occur. Injury causing interference to tumour perfusion promoted tumour vascularization and growth even for more remote incisions, possibly by activating stress-induced angiogenesis. The kinetics of vascularization and growth of these wound-tumour systems sheds light on the clinical observations of increased probability of metastatic recurrence and stimulated regrowth of residual tumour in the site of surgical intervention. High-resolution magnetic resonance imaging could detect the aberrant angiogenic activity of these tumour-wound systems as early as 1 week after injury.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Glioma / blood supply*
  • Magnetic Resonance Imaging
  • Male
  • Mice
  • Neovascularization, Pathologic / etiology*
  • Rats
  • Tumor Cells, Cultured
  • Wound Healing
  • Wounds and Injuries / physiopathology*