Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
    • COVID-19 Content and Resources
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in
  • Log out

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in
  • Log out

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
    • COVID-19 Content and Resources
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Abstract

MR of the normal neonatal brain: assessment of deep structures.

A J Barkovich
American Journal of Neuroradiology September 1998, 19 (8) 1397-1403;
A J Barkovich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

BACKGROUND AND PURPOSE MR imaging is a powerful tool for studying the anatomy of and the developmental changes that occur in the brain. The purpose of this project was to determine which structures can be distinguished on standard spin-echo MR sequences of a normal neonatal brain and with what frequency they can be identified.

METHODS The T1- and T2-weighted spin-echo MR images of 12 term neonates, all of whom had normal neonatal courses and were neurologically and developmentally normal at age 12 months, were reviewed retrospectively. All structures that differed in signal intensity from unmyelinated gray matter and unmyelinated white matter were recorded.

RESULTS In general, myelinated gray matter structures, such as cranial nerve nuclei and other nuclei of the brain stem and deep cerebrum, were the structures best seen on T2-weighted images. Most of these nuclei were seen in 75% to 100% of our subjects on T2-weighted images. They were seen less well on T1-weighted images. Myelinated white matter structures, particularly axonal tracts, were the structures best seen on T1-weighted images. The medial and lateral lemnisci, median longitudinal fasciculus, optic tracts, superior and inferior cerebellar peduncles, and the posterior limbs of the internal capsules were seen in 75% to 100% of our subjects on T1-weighted images. Except for the posterior limbs of the internal capsules, these structures were seen less well on T2-weighted images.

CONCLUSION A large number of small structures, such as the nuclei of the brain stem and deep cerebral nuclei, can be routinely identified on standard spin-echo MR imaging sequences. A knowledge of these structures is essential to proper interpretation of imaging studies in neonates and infants.

  • Copyright © American Society of Neuroradiology
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology
Vol. 19, Issue 8
1 Sep 1998
  • Table of Contents
  • Index by author
Advertisement
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MR of the normal neonatal brain: assessment of deep structures.
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
MR of the normal neonatal brain: assessment of deep structures.
A J Barkovich
American Journal of Neuroradiology Sep 1998, 19 (8) 1397-1403;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
MR of the normal neonatal brain: assessment of deep structures.
A J Barkovich
American Journal of Neuroradiology Sep 1998, 19 (8) 1397-1403;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Segmentation of Myelin-like Signals on Clinical MR Images for Age Estimation in Preterm Infants
  • Comparison of Spin-Echo and Gradient-Echo T1-Weighted and Spin-Echo T2-Weighted Images at 3T in Evaluating Term-Neonatal Myelination
  • Comparison of Spin-Echo T1- and T2-Weighted and Gradient-Echo T1-Weighted Images at 3T in Evaluating Very Preterm Neonates at Term-Equivalent Age
  • Magnetic Resonance Imaging of Neonatal Encephalopathy at 4.7 Tesla: Initial Experiences
  • Changes in Globus Pallidus With (Pre)Term Kernicterus
  • Magnetic Resonance Imaging and Kernicterus
  • Proton Spectroscopy and Diffusion Imaging on the First Day of Life after Perinatal Asphyxia: Preliminary Report
  • Cerebral Maturation in Premature Infants: Quantitative Assessment Using MR Imaging
  • MR-Revealed Myelination in the Cerebral Corticospinal Tract as a Marker for Pelizaeus-Merzbacher's Disease with Proteolipid Protein Gene Duplication
  • Normal Myelination of the Pediatric Brain Imaged with Fluid-Attenuated Inversion-Recovery (FLAIR)MR Imaging
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2022 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2023 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire