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ORIGINAL RESEARCH
ADULT BRAIN

Diagnostic Impact of Bone-Subtraction CT Angiography for
Patients with Acute Subarachnoid Hemorrhage

P. Aulbach, D. Mucha, K. Engellandt, K. Hädrich, X M. Kuhn, and R. von Kummer

ABSTRACT

BACKGROUND AND PURPOSE: Detection and evaluation of ruptured aneurysms is critical for choosing an appropriate endovascular or
neurosurgical intervention. Our aim was to assess whether bone-subtraction CTA is capable of guiding treatment for cerebral aneurysms
in patients with acute SAH and could replace DSA.

MATERIALS AND METHODS: We prospectively studied 116 consecutive patients with SAH with 16 – detector row bone-subtraction CTA
and DSA before intracranial aneurysm treatment. Two independent neuroradiologists reviewed the bone-subtraction CTA blinded to DSA
(reference standard). We determined the accuracy of bone-subtraction CTA for aneurysm detection and the measurement of aneurysm
dimensions and compared the radiation doses of the 2 imaging modalities.

RESULTS: Seventy-one patients (61%) had 74 aneurysms on DSA. Bone-subtraction CTA detected 73 of these aneurysms, but it detected
1 additional aneurysm. On a per-aneurysm basis, sensitivity, specificity, and positive and negative predictive values for bone-subtraction
CTA were 99%, 98%, and 99% and 98%, respectively. For aneurysms of �3 mm, sensitivity was 94% (95% CI, 73%–99%). Bone-subtraction
CTA slightly overestimated neck and dome diameters by �0.2 mm and overestimated the dome-to-neck ratios by 2% on average.
Dose-length product was 565 � 201 mGy � cm for bone-subtraction CTA and 1609 � 1300 mGy � cm for DSA.

CONCLUSIONS: Bone-subtraction CTA is as accurate as DSA in detecting cerebral aneurysms after SAH, provides similar information about
aneurysm configuration and measures, and reduces the average effective radiation dose for vascular diagnostics by 65%. Diagnostic equivalence
in association with dose reduction suggests replacing DSA with bone-subtraction CTA in the diagnostic work-up of spontaneous SAH.

ABBREVIATIONS: BSCTA � bone-subtraction CTA; D/N � dome-to-neck; NECT � nonenhanced CT

Prompt detection and evaluation of ruptured intracranial aneu-

rysms is critical for choosing an appropriate endovascular or

neurosurgical intervention.1 Invasive digital subtraction angiogra-

phy carries an overall risk of neurologic complications, resulting in

permanent deficits in 0.5%.2,3 Providing false-negative results in

5%–10% of patients,4 it also may increase the risk of rebleeding.5,6

Multidetector CT angiography with high spatial resolution

and bone-subtraction CTA (BSCTA) approaches the diagnostic

accuracy of DSA in the detection of intracranial aneurysms.7-12

Thus, BSCTA can be considered an alternative to DSA in treat-

ment planning.13,14 Some authors already recommend BSCTA as

the primary imaging in acute SAH.7,15,16 However, it still seems

unclear whether BSCTA can provide sufficient information for

therapy decisions, making diagnostic DSA redundant.17,18

We therefore tested the hypothesis that BSCTA is as accurate

as DSA for the identification and characterization of cerebral an-

eurysms in patients with SAH, even for small aneurysms and for

those at the level of the skull base. We additionally studied the

reliability of BSCTA and radiation-exposure reduction by avoid-

ing diagnostic DSA.

MATERIALS AND METHODS
Participants
After University Hospital Dresden review board approval (EK No.

73042008) and informed consent, from November 2007 to June

2011, neuroradiologists or neurosurgeons familiar with the pro-

tocol prospectively enrolled patients with acute SAH able to un-

dergo CTA and DSA. We classified SAH severity with the Fisher

score. Patients underwent nonenhanced CT (NECT) and BSCTA
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followed by DSA with 3D reconstructions. We documented the

time interval between CT and DSA. Patients with typical exclu-

sion criteria for CTA or previous coiling or clipping were ex-

cluded. Because we aimed to assess the accuracy of BSCTA for the

detection and description of cerebral aneurysms, we did not fol-

low patients with perimesencephalic SAH further.

CTA Imaging Technique
Examinations were performed with the patient in the supine po-

sition from the C1 vertebral body to the vertex on a 16 – detector

row spiral CT (Somatom Sensation 16; Siemens, Malvern, Penn-

sylvania). We performed BSCTA after low-dose NECT (bone

mask) and CTA, avoiding motion by head fixation and minimiz-

ing the delay between the 2 scans.

We did not use standard NECT for bone masking because

standard NECT is acquired with a gantry tilt preventing direct

x-ray to the eye lenses, whereas CTA data are acquired with no

gantry tilt. The BSCTA algorithm used requires similar, narrow,

section acquisition (0.75 mm for high spatial resolution) and da-

tasets with minimum motion artifacts (0.5 seconds for minimized

motion artifacts during acquisition). Standard-dose NECT, how-

ever, requires a slower rotation time of 1.0 second (to collect a

sufficient amount of x-ray quanta) and a wider collimation of 1.5

mm. The CT scan parameters are listed in Table 1. The acquisition

time was approximately 10 seconds. Bone-subtraction was per-

formed automatically by using special prototype software on a

workstation (syngo 2006G and syngo MultiTechnique Work-

place, VE31D; Siemens).

DSA and 3D-DSA
We used a rotational biplane DSA unit (Allura Xper FD 20 biplane;

Philips Healthcare, Best, the Netherlands) for panangiography (all

cerebral arteries). Per acquisition, we administered 3–6 mL of non-

ionic contrast agent (iohexol, Accupaque, 300 mg I/mL; GE Health-

care, Milwaukee, Wisconsin). 3D reformatted images of rotational

angiographic data were generated at the DSA workstation.

Image Analysis
Two neuroradiologists (D.M., K.E.), with 14 and 10 years of ex-

perience, reviewed the DSA images independently and blinded to

BSCTA. Readers were informed of the patient’s clinical symptoms

and initial CT findings. Reading of BSCTA and DSA datasets was

separated by 8 –10 weeks to prevent bias. To assess intraobserver

reliability, reader 1 analyzed 15 randomly selected BSCTA imag-

ing studies (12.9%) twice, separated by an interval of 1 month.

An aneurysm was considered entirely characterized if all 3 or-

thogonal dimensions were obtained and the aneurysm neck and

dome and arterial incorporations into the sac or neck were visu-

alized and precisely measured. We categorized aneurysms as

“berry-formed,” “fusiform,” and “branching” if they were located

at an arterial bifurcation.

The readers generated maximum intensity projections, vol-

ume rendering technique reformations, and multiplanar re-

constructions searching for aneurysms. If multiple aneurysms

were detected, the most likely source of bleeding was esti-

mated. Dome-to-neck (D/N) ratios were calculated for both

modalities. The 2 readers evaluated images in consensus in case

of discrepancies. We evaluated the effect of patient motion on

image quality for DSA and BSCTA and rated the quality of

BSCTA images on a 4-point scale as “excellent,” “good,”

“moderate,” or “poor.”

Radiation Dose
We measured the dose-length product of both modalities and

calculated the effective doses. Among the recorded values for DSA

examinations, we only considered the diagnostic portion of the

dose-length product for comparison. Exposure information was

reported automatically, as required by the standard of the Inter-

national Electrotechnical Commission (IEC 60601-2-43) for total

fluoroscopy time in minutes, total number of exposures in num-

bers, accumulated fluoroscopy dose in milligrays, accumulated

exposure dose in milligrays, total dose in milligrays, total number

of frames in numbers, image-area dose product in milligrays, en-

trance dose and air kerma in milligrays, exposure start time, kilo-

volt (peak), distance source-to-image receptor distance, exposure

time, x-ray tube current, positioner primary angle, positioner sec-

ondary angle, and frame rate.

Examination and dose reporting for both BSCTA and DSA

examinations are provided through Radiology Information

DICOM 2-way interface, by using the DICOM Worklist Manage-

ment and Technique Performed Procedure Step Standards.

Statistical Methods
We used MedCalc for Windows 12 (Version 12.3.0; MedCalc

Software, Mariakerke, Belgium) for statistical analysis. We consid-

ered DSA, including 3D reconstructions, as the reference standard

for aneurysm evaluation. We calculated the sensitivity, specificity,

and accuracy of BSCTA on per-aneurysm and per-patient bases and

used the Wilson procedure, without a correction for continuity, for

the limits of the CI. We used the Cohen � to quantify inter- and

intrareader agreement beyond chance in detecting aneurysms with

BSCTA. A P value � .05 was statistically significant. We compared

the DSA and BSCTA differences for aneurysm dome and neck diam-

eter and the D/N ratio, applying the Bland-Altman method and a

paired Student t test, to analyze differences in radiation doses.

RESULTS
Participants
During 44 months, 269 consecutive patients presented to our de-

partment with SAH. We excluded 6 patients with prior clipping or

Table 1: Scan parameters for CT examinations

Scan Parameters NECT

BSCTA

Low-Dose
CT CTA

Tube voltage (kV) 120 100 100
Tube current (effective mAs) 320 70 140
Rotation time (sec) 1.0 0.5 0.5
Section acquisition (mm) 16 � 1.5 16 � 0.75 16 � 0.75
Table speed/rotation (mm) 13.2 13.8 13.8
Recon. section thickness (mm) 8 1.0 1.0
Reconstruction increment (mm) 8 0.5 0.5
Automated exposure control Off Off Off
Contrast material (mL)a NA NA 80
Injection rate (mL/s) NA NA 4–5

Note:—Recon. indicates reconstruction; NA, not applicable.
a Iopromide, Ultravist, 370 mg I/mL; Bayer HealthCare, Berlin, Germany.
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coiling and 147 patients due to imaging protocol violations. Fi-

nally, 116 patients (50% women) (mean age, 53.9 � 13.6 years)

were prospectively examined with BSCTA and DSA according to

the study protocol.

CT Findings
All patients had SAH, with a Fisher grade 1 in 8 patients (6.9%), 2

in 7 patients (6.0%), 3 in 42 patients (36.2%), and 4 in 59 patients

(50.9%).

DSA Reference
The time between BSCTA and DSA varied from 20 minutes to 43

hours (median time, 7.0 hours). Of 116 patients, 71 patients

(61.2%) had 74 intracranial aneurysms on initial DSA. Table 2

shows the locations and sizes of intracranial aneurysms as de-

tected and characterized by DSA. We found 53 branching aneu-

rysms (71.6%), 20 berry-form aneurysms (27.0%), and 1 fusiform

aneurysm (1.4%). Among the 45 patients without aneurysms, 6

had arteriovenous malformations. We could not identify the

cause of SAH in 39 patients, among them 27 patients with addi-

tional intracerebral hematomas. We did not have any observa-

tions because our patients with acute SAH had not shown signs of

vasospasm. The average amount of contrast media used for diag-

nostic DSA was 106.4 � 39.8 mL, with a median of 100 mL. The

maximum amount was 230 mL, and the lowest, 50 mL.

BSCTA Findings

BSCTA detected 73 aneurysms in 70 patients, confirmed by

DSA (Fig 1), and missed 1 anterior cerebral artery A2/A3 seg-

ment aneurysm with a diameter of 1.7 mm that was detected by

DSA (Fig 2). Bone-subtraction CTA detected a 2.5-mm left

FIG 1. A 78-year-old-female patient with symmetric infraclinoid aneurysms of the ICA. A, Volume-rendering of BSCTA displays both aneurysms
(arrowhead: right aneurysm; arrow: left aneurysm). B and C, DSA confirms both aneurysms in size and configuration.

FIG 2. False-negative bone-subtraction CTA findings of an aneurysm
of the right anterior cerebral artery in a 50-year-old woman. A, The
right anterior oblique projection DSA shows a small broad-based an-
eurysm (arrow). B, On volume-rendering reconstruction, the aneu-
rysm (arrow) appears fusiform. The white surface in the lower part of
the image represents the bone-to-vessel boundary of the bone-re-
moval processing.

Table 2: Location and sizes of cerebral aneurysms as detected by
DSA

Location

Size Categories

Small
(≤3.0 mm)

Medium
(3.1–5.0 mm)

Large
(>5 mm)

ICA
Infraclinoid 0 0 1
Ophthalmic 0 0 1
PcomA 1 6 2
Carotid-T 1 0 0

ACA
A1 0 1 0
A1/A2 5 16 7
A2 and A3 3a 0 3

MCA
Trifurcation 4b 8 2

PCA 0 1 1
BA

Oral 1 0 3
VA

PICA 0 3 2
V4 0 0 1

All 15 35 23

Note:—PcomA indicates posterior communicating artery; Carotid–T, intracranial
ICA bifurcation; ACA, anterior cerebral artery; A1, A2, A3, segments of the ACA; PCA,
posterior cerebral artery; BA, basilar artery; VA, vertebral artery; PICA, posterior in-
ferior cerebellar artery; V4, distal segment of VA.
a One aneurysm missed by bone-subtraction CTA.
b One aneurysm missed by DSA but detected by bone-subtraction CTA.
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MCA M2 segment aneurysm that was missed by DSA and fi-

nally confirmed by both readers in consensus (Fig 3). Both

findings did not change clinical decisions.

Sensitivity and specificity of BSCTA for intracranial aneu-

rysms are presented in Tables 3 and 4.

Aneurysm dome diameters were slightly longer with a

0.17-mm bias (95% CI, �0.04 to 0.39 mm) measured on BSCTA

compared with DSA (Fig 4A). The measurement differences are

relatively constant over all aneurysm diameters. Aneurysm neck

diameters of BSCTA did not differ from those on DSA (Fig 4B).

Figure 4C shows that BSCTA aneurysm D/N ratios differ by

�0.04 only (95% CI, � 0.16 to 0.08) from the DSA D/N ratios.

The average DSA D/N ratio was 1.90 � 0.86, and the average

BSCTA D/N ratio was 1.86 � 0.84. On average, BSCTA D/N ratios

were 2% smaller than DSA D/N ratios (P � .4678). The highest

agreement of methods was for the D/N ratio of 1.5–2.0. Compar-

ison of the distribution of D/N ratios in DSA versus BSCTA is

shown in Fig 4C.

Image Quality and Reliability
Overall bone-subtraction quality was high (91.4% good or ex-

cellent). Ten of 116 datasets were rated moderate or poor.

Fifteen of 74 aneurysms were near or surrounded by bone and

were correctly detected and characterized with BSCTA. Mo-

tion artifacts impaired DSA in 28 patients (23.9%) and BSCTA

in 2 patients (1.7%). The effect of the motion-impaired data on

the diagnosis is shown in Table 5. The interobserver agreement

for the identification of aneurysms was substantial (� � 0.950;

95% CI, 0.894 –1.000). Agreement per patient was also high

with (� � 0.965; 95% CI, 0.916 –1.000). Both readers agreed

substantially on aneurysm configuration (� � 0.969; 95% CI,

0.941– 0.996; P � .001). Reader 1 agreed in all repeated cases

with his initial reading.

Radiation Dose
The mean dose-length product was 564.7 � 201.4 mGy � cm for

BSCTA and 1608.9 � 1299.6 mGy � cm for DSA, meaning a

reduction of 65% (P � .001, 2-sample Student t test). The effec-

tive dose for BSCTA was between 0.8 and 3.6 mSv, with an average

effective dose of 1.3 � 0.3 mSv. The average effective radiation

dose for diagnostic DSA was 3.7 � 2.98 mSv, ranging from 0.37 to

17.3 mSv.

FIG 3. False-positive bone-subtraction CTA findings in an aneurysm (2.5
mm) of the left middle cerebral artery distal to the trifurcation in a 50-
year-old man with 2 aneurysms. A, Volume-rendering of bone-subtrac-
tion CTA depicts the aneurysm (anteroposterior view) that was missed
by DSA. B, 3D-DSA image of the initially missed M2 MCA trifurcation
aneurysm (left anterior oblique view) that was confirmed in retrospect.

Table 3: Accuracy of BSCTA in detecting cerebral aneurysms
TP

(No.)
TN

(No.)
FP

(No.)
FN

(No.)
Sensitivity (%)

(No.)
Specificity (%)

(No.)
PPV (%)

(No.)
NPV (%)

(No.)
Accuracy (%)

(No.)
Per patient 70 45 0 1 99 (70/71) 100 (45/45) 100 (70/70) 98 (45/46) 99 (115/116)

95% CI 92–100 92–100 95–100 89–100 95–100
Per aneurysm 73 45 1 1 99 (73/74) 98 (45/46) 99 (73/74) 98 (45/46) 98 (118/120)

95% CI 93–100 89–100 93–100 89–100 94–100

Note:—TP indicates true-positive; TN, true-negative; FP, false-positive; FN, false-negative; PPV, positive predictive value; NPV, negative predictive value.

Table 4: Accuracy of BSCTA in detecting cerebral aneurysms of different sizes

Diameter
TP

(No.)
TN

(No.)
FP

(No.)
FN

(No.)
Sensitivity (%)

(No.)
Specificity (%)

(No.)
PPV (%)

(No.)
NPV (%)

(No.)
Accuracy (%)

(No.)
�5.0 mm 23 45 0 0 100 (23/23) 100 (45/45) 100 (23/23) 100 (45/45) 100 (68/68)

95 % CI 86–100 92–100 86–100 92–100 95–100
3.1–5.0 mm 35 45 0 0 100 (35/35) 100 (45/44) 100 (35/35) 100 (45/45) 100 (80/80)

95 % CI 90–100 92–100 90–100 92–100 94–100
�3.0 mm 16 45 1 1 94 (16/17) 98 (45/46) 94 (16/17) 98 (45/46) 97 (61/63)

95 % CI 73–99 89–100 73–99 89–100 89–100

Note:—TP indicates true-positive; TN, true-negative; FP, false-positive; FN, false-negative; PPV, positive predictive value; NPV, negative predictive value.
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DISCUSSION
Our study confirmed a high accuracy of 16 – detector row BSCTA

in depicting and characterizing intracranial aneurysms. Immedi-

ate selection and planning of treatment was possible, even for

complex and small aneurysms. This effect was true even for the

relatively small amount of aneurysms that were close to bony

structures. Furthermore, we demonstrated that the BSCTA

method is already delivering high accuracy and robustness, even

with widely available, outdated, 16 – detector row multidetector

CT hardware.

Therefore given the radiation-exposure reduction, BSCTA

could replace diagnostic DSA. More advanced CT technology will

probably perform as well or even better.

CTA has a high sensitivity and specificity in detecting intracra-

nial aneurysms,8,9,11,12,17,19,20 but skull base structures can hide

adjacent aneurysms.17,21 Bone-subtraction CTA22,23 has been de-

veloped to overcome this problem. A feasibility study22 and a

study with 100 patients24 showed that BSCTA can improve the

detection of vascular pathology closely adjacent to bony struc-

tures. These studies, however, did not use DSA as the reference

standard to determine the diagnostic accuracy of BSCTA under

clinical conditions. A recent 320 – detector row BSCTA study

evaluated the diagnostic accuracy of nonsubtracted and sub-

tracted volumetric CTA data.12 The sensitivity for nonsubtracted

CTA was 96.7% compared with 99.2% for subtracted CTA with

100% specificity for both.

Our findings are concordant with those in previous reports8-11

and compare well with a meta-analysis of twelve 16–detector row

BSCTA studies.10 The sensitivity and specificity of BSCTA for small

aneurysms (�3.0 mm) were lower than those in our population.

Our study results also compare well with 8 pooled 64 – detec-

tor row BSCTA studies.10 Similar results were seen in a 64 – detec-

tor row multidetector CT study with 89 patients.7 Our study re-

sults are also in line with those in 2 other studies by using modern

dual-source and 320 – detector row BSCTA.12

In our study, 1 aneurysm of �3 mm (2.5 mm) in diameter was

missed by DSA (Fig 3). Another �3-mm (1.7 mm) aneurysm was

initially missed by BSCTA (Fig 2). In both cases, these findings did

not change the treatment strategy. Both methods have a small risk

of missing small aneurysms. The diagnostic accuracy of DSA was

limited by complex vascular anatomy (vessel trifurcation, small di-

ameter of �3 mm) and inadequate projections due to patient mo-

tion. In a study with 50 patients presenting with diffuse aneurysmal

pattern, 2 aneurysms were missed initially by DSA and BSCTA.25

False-positive cases on both 16 – and 64 – detector row BSCTA

can be explained a by focal venous plexus overlying the MCA.17

Venous contrast has been described as a potential source of er-

ror.26,27 Venous enhancement is, however, not a crucial factor in

the detection of cerebral aneurysms, except for extensive en-

FIG 4. Bland-Altman plots show the relationship between differ-
ences and means of DSA and BSCTA in aneurysm dome (A) and neck
(B) measurements and dome/neck ratios (C). The black dotted line
indicates the regression line of the differences. The 2 thin black lines
represent the 95% confidence interval for the regression line of the
differences. A, Bone subtraction CTA tends to overestimate aneu-
rysm domes by 0.17 mm (95% CI, 0.04 – 0.39 mm) and has a mild trend
toward higher values for dome diameters with larger values. The col-
ored rectangular boxes highlight manual measurements with inter-
polation of DSA results because DSA millimeter calibrations were not
transferred with the other DSA data. The outlier case is 1 large
14.0-mm aneurysm that was overestimated by 6.0 mm and belongs to
the manually calculated measurements. B, Bone-subtraction CTA
measurements of the aneurysm neck are in good agreement with DSA
(0 � 1.96 mm). Outlier cases are small 2.5- and 2.7-mm aneurysms that
were underestimated by �1.5 and �1.2 mm. The third outlier was a
2.7-mm aneurysm that was overestimated by 1.5 mm. C, Bone-subtrac-
tion CTA slightly overestimates dome/neck ratios compared with
DSA (mean, 0.04; 95% CI, 0.08–0.16). Four of the 6 outliers belong
to the manually calculated DSA measurements (colored rectangular
boxes).

Table 5: Patient motion artifacts and performance on aneurysm
detection

Method
Intubated
Patients

Motion Artifacts
Aneurysm
Detection

Mild Moderate Severe FN FP
DSA 1 15 6 7 0 0
CT 0 1 1 0 0 0

Note:—.FP indicates false-positive; FN, false-negative.
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hancement of the cavernous sinus.28 In contrast, with 16 – detec-

tor row CTA and bolus triggering, arterial and venous structures

can be distinguished by their different attenuations. Whether

modern, wide-detector (�64 – detector row), multidetector CT is

capable of further improving the diagnostic accuracy of BSCTA,

beyond the known 16 – and 64 – detector row multidetector CT

results, needs to be investigated. With wider z-coverage, the neg-

ative effect of scatter radiation and conebeam artifacts increases

and may not lead to a further gain in accuracy.29,30

The most common and well-studied geometric determinant

of treatment decisions and outcome is the dome-to-neck ratio.21

Aspects of aneurysm geometry such as shape, size, dome-to-neck

ratio, and location and the relationship to the parent vessels all

may impact treatment decisions.31,32

Interobserver agreement in our study was somewhat higher

than that reported previously.11,17,19,26 Intraobserver agreement

was excellent as in another study by Lu et al.11

We had excellent interreader agreement for aneurysm iden-

tification and configuration. Our results are in line with those

in other studies,17,26 even with a recent study with 320 – detec-

tor row BSCTA33 comparing CTA with intraoperative

observations.

Only 1 study evaluated the D/N ratios in a comparable fash-

ion, but not in the same level of detail.26 In contrast to our

results, this study reported a general overestimation of D/N

ratio with 16 – detector row BSCTA due to partial volume sam-

pling effects.24 Considerable overestimation of the D/N ratio

of aneurysms may have led to therapeutic option changes.26

Endovascular treatment of wide-neck or “difficult” aneurysms

requires special techniques such as balloon- or stent-assisted

coiling.21 Because we did not document the decisions of our

interventionists and neurosurgeons, we do not know to what

extent the information provided by BSCTA has influenced pa-

tient management. We can state, however, that BSCTA as-

sessed the site and shape of cerebral aneurysms as accurately as

DSA.

Radiation is an important factor for patients with SAH,34 be-

cause many are younger and need repeat brain imaging. Our

BSCTA dose values were below the European reference value (2.4

mSv) for CT angiography of the brain.35 Our average DSA radia-

tion dose remained at the lower limit of doses reported for DSA

(3.5– 6.5 mSv).36 A disadvantage of BSCTA is the radiation dose,

due to 2 consecutive scans, which means an increase of exposure

by 20%–25% above the level of standard CTA according to our

and others’ experience.37,38 Low-dose settings for nonenhanced

CT are acceptable in achieving an effective dose below 3 mSv.

Recently new approaches are being evaluated to replace the low-

dose NECT with either a standard-dose NECT or a late venous CT

dataset, to receive the subtraction bone mask.39-41 Optimally, the

work-up of SAH before the selection of a method of aneurysm

treatment should be exclusively noninvasive diagnostics. In con-

trast to diagnostic DSA, BSCTA can reduce the door-to-treatment

time by providing the relevant information instantly.17,26 It may

even prevent DSA in cases with a clear indication for clip-

ping.26,27,42 The accuracy of BSCTA being comparable with DSA

now allows clipping of these aneurysms without additional DSA

when transarterial intervention is not possible. In cases where the

first CTA does not show the cause of SAH, it is not necessary to

perform DSA. A second CTA is sufficient.

Moreover, BSCTA can exclude an aneurysm as the cause of

spontaneous SAH.17

Our study has limitations. Although BSCTA was feasible in

almost all patients, we could recruit patients only when the

involved neuroradiologist was on duty and had ordered the

new BSCTA protocol. We cannot safely exclude the possibility

that the patients identified by study neuroradiologists were

different from those with SAH seen by a radiologist not famil-

iar with the study. We aimed to consecutively identify all pa-

tients with acute SAH and without previous aneurysm treat-

ment, which means we had no knowledge of the source of

bleeding. We thought this population was the best to study the

accuracy of BSCTA. We lost patients for the study when radiologists

on call were not yet familiar with the study protocol. We think, how-

ever, that the patients we recruited represented the population typical

for acute SAH. Consequently, we extended the observation period to

reach the planned sample size.

In our institution, we now recommend BSCTA in addition to

NECT as the first imaging technique in patients with acute SAH. Our

neurosurgeons clip aneurysms solely on the basis of this information

in urgent cases that cannot be coiled. We have reduced the DSA

protocol before intervention to the artery affected and do not further

perform panangiographies. We further recommend repeat BSCTA

in cases of CTA with negative findings in patients with SAH, but we

admit that not all of our neurosurgeons consistently follow this

advice.

CONCLUSIONS
The widely available 16 – detector row BSCTA allows reliable

and accurate detection and characterization of cerebral aneu-

rysms in patients with acute SAH and thus can guide treatment

decisions faster and more efficiently. If the location and shape

of aneurysms favor surgical clipping, an additional DSA is no longer

necessary because all information needed by neurosurgeons is pro-

vided. If coiling is preferred, complete diagnostic 4-vessel panangiog-

raphy is no longer routinely required. Interventionists can focus DSA

on the site of the symptomatic aneurysm. This new strategy will not

only reduce the risks and radiation dose for patients and physicians,

but also reduce cost and time. More modern CT technology may

make BSCTA more efficient, more standardized, and finally easier to

apply.
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