Radiologic Features and Expression of Vascular Endothelial Growth Factor Stratify Survival Outcomes in Patients with Glioblastoma ================================================================================================================================= * K. Wang * Y.Y. Wang * J.F. Wang * J. Ma * T. Jiang * J.P. Dai ## Abstract **BACKGROUND AND PURPOSE:** Vascular endothelial growth factor is a well-known tumor-specific biomarker that mediates angiogenesis in glioblastoma via hypoxia-dependent mechanisms. Our aim was to investigate the correlation of clinical characteristics, radiologic features, and vascular endothelial growth factor expression with survival outcomes in patients with glioblastoma. **MATERIALS AND METHODS:** Clinical and radiologic data of 185 patients with glioblastoma were retrospectively reviewed. Vascular endothelial growth factor expression was examined in all cases via immunohistochemical analysis. Univariate and multivariate analyses were performed to identify the prognostic factors of progression-free survival and overall survival. **RESULTS:** Vascular endothelial growth factor expression levels were associated with the presence of ringlike tumor contrast enhancement. Age, preoperative Karnofsky Performance Scale score, gross total resection, and adjuvant therapy were identified as prognostic factors. Among patients undergoing gross total resection, high vascular endothelial growth factor expression was associated with longer progression-free survival (*P* = .011) and overall survival (*P* = .039). For tumors with high vascular endothelial growth factor expression, both the non-contrast-enhancing tumor component and peritumoral edema could stratify overall survival (*P* = .039 and .018, respectively), while only the presence of the non-contrast-enhancing tumor component predicted a longer progression-free survival (*P* = .024). **CONCLUSIONS:** Vascular endothelial growth factor expression level was not an independent prognostic factor in glioblastoma. However, high vascular endothelial growth factor expression might predict longer survival in patients in whom gross total resection was achieved. Furthermore, peritumoral edema and the non-contrast-enhancing tumor component could stratify survival outcomes in patients with high vascular endothelial growth factor tumors. ## ABBREVIATIONS: GTR : gross total resection 50% positive cells. Glioblastoma tumors were classified into 2 groups based on the level of VEGF expression as follows: low (−∼++) and high (+++) expression groups. ### Statistical Analysis The χ2 test was performed to detect the differences in clinical and radiologic features between patients with high and low VEGF expression. Consistency in the assessment of radiologic features by the 2 radiologists was evaluated by using the κ consistency test. Survival curves were generated by using the Kaplan-Meier method, and log-rank analysis was performed to compare PFS and OS. Significant prognostic factors (those with a *P* value < .05) identified by univariate analysis were entered into multivariate survival analysis by using the Cox proportional hazard ratio (HR) model. ## Results ### Patient Characteristics A total of 185 patients with glioblastoma with post-T1 contrast enhancement were included in this study. Of these, tumors of 124 patients exhibited ringlike enhancement. Patient sex, preoperative KPS, enhancement pattern, and extent of resection were significantly different between the high and low VEGF expression groups (*P* < .001, χ2 test, On-line Table). On the basis of the postoperative contrast-enhanced T1-weighted images obtained <72 hours after the operation, 112 (60.5%, 112/185) had GTR, and 156 received adjuvant therapy following tumor resection. In addition, there was no significant difference in the expression of isocitrate dehydrogenase 1, *O6-methylguanine DNA methyltransferase*, and epidermal growth factor receptor between patients with high-versus-low VEGF expression. ### Association of the Radiologic Features and Extent of Resection with VEGF Expression All data regarding tumor volume and location are summarized in the On-line Table. The mean tumor volume of patients with high VEGF expression (+++) was significantly larger than that of patients with low VEGF expression (− ∼ ++) (*P* = .033). However, we observed no significant differences in the involvement of brain lobes between tumors with low and high VEGF expression. The κ values for the consistency between the 2 evaluators for enhancement patterns, peritumoral edema, and nCET were 0.85 (*P* = .014), 0.81 (*P* = .008), and 0.76 (*P* = .021), respectively. Ringlike enhancement was more likely to be observed in glioblastomas with high VEGF expression than in those with low VEGF expression (75.6% versus 60.2%, *P* = .027, χ2 test).The prevalence of peritumoral edema and nCET in the low-versus-high VEGF expression groups was not significantly different (peritumoral edema: 66.0% versus 74.4%, *P* = .218; nCET: 35.0% versus 46.3%, *P* = .116; χ2 test). Moreover, GTR was significantly more likely to be achieved in glioblastomas with high VEGF expression than in those with low VEGF expression (72.0% versus 51.5%, *P* = .005). ### Progression-Free Survival Tumor recurrences were identified by MR images in 143 (77.3%) patients during the follow-up period. The median follow-up period for PFS analysis was 9.8 months (range, 1.0–53.1 months), and the median PFS was 7.6 months (range, 2.1–32.6 months). Univariate analysis revealed that age (*P* = .018), preoperative KPS (*P* = .015), extent of resection (*P* = .013), and adjuvant therapy (*P* = .021) were valuable prognostic factors for PFS (Table 1). These 4 factors remained significant in the multivariate Cox proportional hazards analysis. Age at diagnosis of 50 years or older (*P* = .032, HR = 1.642) and preoperative KPS of <80 (*P* = .024, HR = 2.215) were associated with shorter PFS, whereas GTR (*P* = .022, HR = 1.849) and adjuvant therapy (*P* = .038, HR = 0.652) indicated longer PFS (Table 2). View this table: [Table 1:](http://www.ajnr.org/content/37/4/629/T1) Table 1: Univariate analysis of survival outcomes for patients with glioblastoma View this table: [Table 2:](http://www.ajnr.org/content/37/4/629/T2) Table 2: Multivariate analysis of survival outcomes ### Overall Survival At the time of analysis, 23 patients with available follow-up data were alive. The median follow-up period for OS analysis was 13.8 months (range, 2.0–86.8 months), and the median OS was 15.1 months (range, 3.8–67.6 months). Univariate analysis identified age (*P* = .029), preoperative KPS (*P* = .038), extent of resection (*P* = .022), and adjuvant therapy (*P* = .032) as prognostic factors of OS (Table 1). In the multivariate Cox proportional hazards analysis, age at diagnosis of 50 years or older (*P* = .043, HR = 1.348) and preoperative KPS of <80 (*P* = .028, HR = 1.782) were identified as poor prognostic factors for OS, whereas GTR (*P* = .031, HR = 1.615) indicated longer OS. However, adjuvant therapy failed to show a predictive value for survival outcomes (Table 2). ### Prognostic Value of VEGF Expression Levels in Patients with GTR To examine the prognostic value of VEGF expression when the extent of resection was taken into account, we classified patients into 4 groups according to their VEGF expression levels and the extent of resection as follows: GTR and high VEGF expression, 3.0.CO;2-L&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=9988225&link_type=MED&atom=%2Fajnr%2F37%2F4%2F629.atom) [Web of Science](http://www.ajnr.org/lookup/external-ref?access_num=000078260600003&link_type=ISI) 10. 10. Leon SP, Folkerth RD, Black PM. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 1996;77:362–72 pmid:8625246 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1002/(SICI)1097-0142(19960115)77:2<362::AID-CNCR20>3.0.CO;2-Z&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=8625246&link_type=MED&atom=%2Fajnr%2F37%2F4%2F629.atom) [Web of Science](http://www.ajnr.org/lookup/external-ref?access_num=A1996TR25600020&link_type=ISI) 11. 11. Zhou YH, Tan F, Hess KR, et al. The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival. Clin Cancer Res 2003;9:3369–75 pmid:12960124 [Abstract/FREE Full Text](http://www.ajnr.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6ODoiOS85LzMzNjkiO3M6NDoiYXRvbSI7czoxOToiL2FqbnIvMzcvNC82MjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 12. 12. Carlson MR, Pope WB, Horvath S, et al. Relationship between survival and edema in malignant gliomas: role of vascular endothelial growth factor and neuronal pentraxin 2. Clin Cancer Res 2007;13:2592–98 doi:10.1158/1078-0432.CCR-06-2772 pmid:17473188 [Abstract/FREE Full Text](http://www.ajnr.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6OToiMTMvOS8yNTkyIjtzOjQ6ImF0b20iO3M6MTk6Ii9ham5yLzM3LzQvNjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 13. 13. Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010;28:1963–72 doi:10.1200/JCO.2009.26.3541 pmid:20231676 [Abstract/FREE Full Text](http://www.ajnr.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNvIjtzOjU6InJlc2lkIjtzOjEwOiIyOC8xMS8xOTYzIjtzOjQ6ImF0b20iO3M6MTk6Ii9ham5yLzM3LzQvNjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 14. 14. Vogelbaum MA, Jost S, Aghi MK, et al. Application of novel response/progression measures for surgically delivered therapies for gliomas: Response Assessment in Neuro-Oncology (RANO) Working Group. Neurosurgery 2012;70:234–43; discussion 243–44 doi:10.1227/NEU.0b013e318223f5a7 pmid:21593697 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1227/NEU.0b013e318223f5a7&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=21593697&link_type=MED&atom=%2Fajnr%2F37%2F4%2F629.atom) [Web of Science](http://www.ajnr.org/lookup/external-ref?access_num=000298145900055&link_type=ISI) 15. 15. Carrillo JA, Lai A, Nghiemphu PL, et al. Relationship between tumor enhancement, edema, IDH1 mutational status, MGMT promoter methylation, and survival in glioblastoma. AJNR Am J Neuroradiol 2012;33:1349–55 doi:10.3174/ajnr.A2950 pmid:22322613 [Abstract/FREE Full Text](http://www.ajnr.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo5OiIzMy83LzEzNDkiO3M6NDoiYXRvbSI7czoxOToiL2FqbnIvMzcvNC82MjkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 16. 16. Pope WB, Sayre J, Perlina A, et al. MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol 2005;26:2466–74 pmid:16286386 [Abstract/FREE Full Text](http://www.ajnr.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czoxMDoiMjYvMTAvMjQ2NiI7czo0OiJhdG9tIjtzOjE5OiIvYWpuci8zNy80LzYyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 17. 17. Poon RT, Fan ST, Wong J, Clinical implications of circulating angiogenic factors in cancer patients. J Clinical Oncol 2001;19:1207–25 pmid:11181687 [Abstract/FREE Full Text](http://www.ajnr.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamNvIjtzOjU6InJlc2lkIjtzOjk6IjE5LzQvMTIwNyI7czo0OiJhdG9tIjtzOjE5OiIvYWpuci8zNy80LzYyOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 18. 18. Lu KV, Bergers G. Mechanisms of evasive resistance to anti-VEGF therapy in glioblastoma. CNS Oncol 2013;2:49–65 doi:10.2217/cns.12.36 pmid:23750318 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.2217/cns.12.36&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=23750318&link_type=MED&atom=%2Fajnr%2F37%2F4%2F629.atom) 19. 19. Reardon DA, Wen PY, Desjardins A, et al. Glioblastoma multiforme: an emerging paradigm of anti-VEGF therapy. Expert Opin Biol Ther 2008;8:541–53 doi:10.1517/14712598.8.4.541 pmid:18352856 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1517/14712598.8.4.541&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=18352856&link_type=MED&atom=%2Fajnr%2F37%2F4%2F629.atom) [Web of Science](http://www.ajnr.org/lookup/external-ref?access_num=000255065200015&link_type=ISI) 20. 20. Desjardins A, Friedman HS. Bevacizumab therapy for glioblastoma: a passionate discussion. CNS Oncol 2014;3:1–3 doi:10.2217/cns.13.53 pmid:25054891 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.2217/cns.13.53&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=25054891&link_type=MED&atom=%2Fajnr%2F37%2F4%2F629.atom) 21. 21. Poulsen HS, Urup T, Michaelsen SR, et al. The impact of bevacizumab treatment on survival and quality of life in newly diagnosed glioblastoma patients. Cancer Manag Res 2014;6:373–87 doi:10.2147/CMAR.S39306 pmid:25298738 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.2147/CMAR.S39306&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=25298738&link_type=MED&atom=%2Fajnr%2F37%2F4%2F629.atom) 22. 22. Flamme I, Frölich T, Risau W. Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 1997;173:206–10 pmid:9365523 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1002/(SICI)1097-4652(199711)173:2<206::AID-JCP22>3.0.CO;2-C&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=9365523&link_type=MED&atom=%2Fajnr%2F37%2F4%2F629.atom) [Web of Science](http://www.ajnr.org/lookup/external-ref?access_num=A1997YE45600022&link_type=ISI) 23. 23. Maldaun MV, Suki D, Lang FF, et al. Cystic glioblastoma multiforme: survival outcomes in 22 cases. J Neurosurg 2004;100:61–67 doi:10.3171/jns.2004.100.1.0061 pmid:14743913 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.3171/jns.2004.100.1.0061&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=14743913&link_type=MED&atom=%2Fajnr%2F37%2F4%2F629.atom) 24. 24. Fischer I, Gagner JP, Law M, et al. Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 2005;15:297–310 pmid:16389942 [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=16389942&link_type=MED&atom=%2Fajnr%2F37%2F4%2F629.atom) [Web of Science](http://www.ajnr.org/lookup/external-ref?access_num=000233512700005&link_type=ISI) 25. 25. Jain RK, di Tomaso E, Duda DG, et al. Angiogenesis in brain tumours. Nat Rev Neurosci 2007;8:610–22 doi:10.1038/nrn2175 pmid:17643088 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1038/nrn2175&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=17643088&link_type=MED&atom=%2Fajnr%2F37%2F4%2F629.atom) [Web of Science](http://www.ajnr.org/lookup/external-ref?access_num=000248211800015&link_type=ISI) 26. 26. Pope WB, Lai A, Nghiemphu P, et al. MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 2006;66:1258–60 doi:10.1212/01.wnl.0000208958.29600.87 pmid:16636248 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1212/01.wnl.0000208958.29600.87&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=16636248&link_type=MED&atom=%2Fajnr%2F37%2F4%2F629.atom) 27. 27. Vredenburgh JJ, Desjardins A, Herndon JE 2nd., et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007;13:1253–59 doi:10.1158/1078-0432.CCR-06-2309 pmid:17317837 [Abstract/FREE Full Text](http://www.ajnr.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6OToiMTMvNC8xMjUzIjtzOjQ6ImF0b20iO3M6MTk6Ii9ham5yLzM3LzQvNjI5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 28. 28. Pope WB, Chen JH, Dong J, et al. Relationship between gene expression and enhancement in glioblastoma multiforme: exploratory DNA microarray analysis. Radiology 2008;249:268–77 doi:10.1148/radiol.2491072000 pmid:18796682 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1148/radiol.2491072000&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=18796682&link_type=MED&atom=%2Fajnr%2F37%2F4%2F629.atom) [Web of Science](http://www.ajnr.org/lookup/external-ref?access_num=000259505200032&link_type=ISI) * Received May 30, 2015. * Accepted after revision August 19, 2015. * © 2016 by American Journal of Neuroradiology