Early Neuroimaging Markers in β Propeller Protein-Associated Neurodegeneration =============================================================================== * L. Chiapparini * G. Zorzi Neurodegeneration with brain iron accumulation (NBIA) encompasses a heterogeneous group of rare diseases characterized by abnormal progressive iron accumulation in the basal ganglia (BG), movement disorders, and cognitive disability.1 β propeller protein-associated neurodegeneration (BPAN) is, to date, the most common NBIA disorder.2 It is caused by mutations in an X-linked gene, *WDR45*, which has an important role in autophagy.3⇓-5 The disease is more common in females and typically presents with global developmental delay, speech impairment, abnormal gate, sleep disturbances, and epilepsy in childhood followed by severe dystonia, parkinsonism, and progressive dementia in young adulthood, though the phenotypic spectrum is broader and includes Rett syndrome, developmental and epileptic encephalopathy, and intellectual disability.6⇓-8 The distinctive BPAN neuroradiologic findings are well-known in adolescence and adulthood and include the following: T2, T2*, and SWI hypointensity in the substantia nigra (SN) and GP; the “halo sign” on T1WI (ie, a symmetric hyperintense signal surrounding a thin, dark, central band in the SN and cerebral peduncles), which is pathognomonic for BPAN; a normal or thinned corpus callosum; and mild-to-moderate global cerebellar and cerebral atrophy.5,6,9,10 Findings of neuroimaging performed during early childhood are nearly all normal. In some cases, delayed myelination, nonspecific cerebellar and cerebral atrophy, and a thin corpus callosum have been described.2,11 Because the clinical features are not specific and imaging may not demonstrate the classic findings at a young age, the diagnosis is often made with gene panel or exome sequencing, which reveals a mutation in *WDR45.*7 The article by Papandreou et al,12 published in the current issue of the *American Journal of Neuroradiology*, represents an important retrospective cohort study of 15 pediatric patients with a confirmed pathogenetic *WDR45* variant, focusing on early MR imaging features. The authors took into account a vast amount of neuroimaging findings and reported that early neuroradiologic features, in most cases, included dentate nuclei hyperintensity, GP and SN swelling and hyperintensity, as well as a thin corpus callosum and cerebral and cerebellar atrophy of various degrees. They also observed optic nerve thinning and an unusually small midbrain. Iron deposition was uncommon in patients younger than 4 years of age and was never present in children younger than 3 years of age but was evident in almost all patients scanned at 5 years of age or older. A minor criticism of the present work12 was that the assessment of cerebral volume reduction, detected in most of the cases, was subjective and is actually unreliable due to lack of age-matched controls. Indeed, in children, subjective assessment of brain atrophy can be difficult because of craniocerebral disproportion. Furthermore, the authors report midbrain atrophy in all cases, whereas no obvious midbrain atrophy is observed in Fig 1 and, in general, in any of the other cases reported.13⇓⇓-16 Another critical issue concerns the assessment of optic nerve atrophy in axial sections, which we do not consider correct because in general, errors occur when measuring optic nerve diameter on axial images. If one focuses on the GP and SN and on the iron-sensitive sequences (T2WI, T2*WI, and SWI), the most relevant evidence is that iron deposition is not present early in the course of the disease but accumulates with time. In particular, there is some sort of evolution of signal abnormalities in these structures from early childhood to early adulthood that could be considered highly specific for BPAN and that is represented by an early, enlarged GP and SN appearance, with slight T2 hyperintenisty and subsequent progressive iron accumulation. SWI sequences can detect very early iron deposition. Iron accumulates in the SN, emerging as the most affected nucleus and, to a lesser extent, in the GP. On T2WI or SWI, the SN results are usually more hypointense compared with the GP, a feature that may help distinguish BPAN from other forms of NBIA.9 Sometimes, on the T1WI the halo sign is evident in the SN.2,5 This is a late sign, and its absence in the article by Papandreou et al12 could be related to the young age of their patients (0–18 years of life). Most interesting, it is not entirely clear why GP and SN enlargement and T2 hyperintensity predominate early. In four of our cases,15 we interpreted the swelling as a very early inflammation caused by dysfunction in the autophagy-lysosome complex. The authors12 also noted that similar neuroimaging findings have been reported in cases with biallelic *WIPI2* mutations,17 which, similar to *WDR45* (also known as *WIP14*), belong to the family of WD-repeat proteins, which have an essential role in the early stages of autophagy. We agree that it would be interesting to ascertain whether a similar neuroimaging pattern is present in other congenital autophagy disorders. It is certain, however, that neuroinflammation evolves rapidly in neurodegeneration and progressive iron deposition,18,19 highlighting how the first abnormality is due to cellular damage, while the accumulation of iron is probably only a late epiphenomenon of the degenerative process.20,21 Concerning other characteristic imaging signs, in all the cases reported by Papandreou et al12 and, in general in most of the cases reported in the literature,13⇓⇓-16 transient or persistently observed T2-hyperintense signal in the dentate nuclei is a typical finding that helps suggest the diagnosis. This is a finding not seen in other NBIA disorders and, from a pathophysiologic point of view, also probably related to chronic inflammatory changes.12 Delayed myelination is a transient, frequent finding that normalizes during the follow-up MR imaging;11,14 thin corpus callosum and cerebellar atrophy (present in other NBIA disorders) are prominent features frequently seen in early childhood11 but are nonspecific signs. We believe one of the major merits of the present study is stressing the important role of early MR imaging findings to reach an accurate and early BPAN diagnosis for the best multidisciplinary management of these patients. Even though normal brain MR imaging findings do not exclude BPAN in a young child, early neuroimaging markers highlighted by Papandreou et al,12 such as GP and SN swelling, dentate nuclei T2 hyperintensity, corpus callosum thinning, and cerebral and cerebellar atrophy in the appropriate clinical context, may strongly suggest the diagnosis. In agreement with the authors, we believe that it is important to not discard a variant of *WDR4*5 in the absence of iron accumulation in the basal ganglia in the early stages of the disease. ## References 1. 1.Hogarth P. Neurodegeneration with brain iron accumulation: diagnosis and management. J Mov Disord 2015;8:1–13 doi:10.14802/jmd.14034 pmid:25614780 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.14802/jmd.14034&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=25614780&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 2. 2.Wilson JL, Gregory A, Kurian MA, et al; BPAN Guideline Contributing Author Group. Consensus clinical management guideline for beta-propeller protein-associated neurodegeneration. Dev Med Child Neurol;2021;63:1402–09 doi:10.1111/dmcn.14980 pmid:34347296 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1111/dmcn.14980&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=34347296&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 3. 3.Saitsu H, Nishimura T, Muramatsu K, et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 2013;45:445–49, 449e1 doi:10.1038/ng.2562 pmid:23435086 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1038/ng.2562&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=23435086&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 4. 4.Hong Huan Hor C, Luen Tang B. Beta-propeller protein-associated neurodegeneration (BPAN) as a genetically simple model of multifaceted neuropathology resulting from defects in autophagy. Rev Neurosci 2019;30:261–77 doi:10.1515/revneuro-2018-0045 pmid:30204590 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1515/revneuro-2018-0045&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=30204590&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 5. 5.Hayflick SJ, Kruer MC, Gregory A, et al. Beta-propeller protein-associated neurodegenration: a new X-linked dominant disorder with brain iron accumulation. Brain 2013;136:1708–17 doi:10.1093/brain/awt095 pmid:23687123 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1093/brain/awt095&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=23687123&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 6. 6.Adang LA, Pizzino A, Malhotra A, et al. Phenotypic and imaging spectrum associated with WDR45. Pediatr Neurol 2020;109:56–62 doi:10.1016/j.pediatrneurol.2020.03.005 pmid:32387008 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1016/j.pediatrneurol.2020.03.005&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=32387008&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 7. 7.Chen H, Qian Y, Yu S, et al. Early onset developmental delay and epilepsy in pediatric patients with WDR45 variants. Eur J Med Genet 2019;62:149–60 doi:10.1016/j.ejmg.2018.07.002 pmid:29981852 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1016/j.ejmg.2018.07.002&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=29981852&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 8. 8.Kano K, Yamanaka G, Muramatsu K, et al. Beta-propeller protein-associated neurodegeneration presenting Rett-like features: a case report and literature review. Am J Med Genet A 2021;185:579–83 doi:10.1002/ajmg.a.61993 pmid:33251766 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1002/ajmg.a.61993&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=33251766&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 9. 9.Kruer MC, Boddaert N, Schneider SA, et al. Neuroimaging features of neurodegeneration with brain iron accumulation. AJNR Am J Neuroradiol 2012;33:407–14 doi:10.3174/ajnr.A2677 pmid:21920862 [Abstract/FREE Full Text](http://www.ajnr.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo4OiIzMy8zLzQwNyI7czo0OiJhdG9tIjtzOjIxOiIvYWpuci80My8xMi8xODE1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 10. 10.Ichinose Y, Miwa M, Onohara A, et al. Characteristic MRI findings in beta-propeller protein-associated neurodegeneration (BPAN). Neurol Clin Pract 2014;4:175–77 doi:10.1212/01.CPJ.0000437694.17888.9b pmid:24790802 [Abstract/FREE Full Text](http://www.ajnr.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTM6Im5ldXJjbGlucHJhY3QiO3M6NToicmVzaWQiO3M6NzoiNC8yLzE3NSI7czo0OiJhdG9tIjtzOjIxOiIvYWpuci80My8xMi8xODE1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 11. 11.Rathore GS, Schaaf CP, Stocco AJ. Novel mutation of the WDR45 gene causing beta-propeller protein-associated neurodegeneration. Mov Disord 2014;29:574–75 doi:10.1002/mds.25868 pmid:24610255 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1002/mds.25868&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=24610255&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 12. 12.Papandreou A, Soo A, Spaull R, et al. Expanding the spectrum of early neuroradiological findings in **β** propeller protein-associated neurodegeneration. AJNR Am J Neuroradiol 2022;43:1810–14 doi:10.3174/ajnr.A7693 pmid:36328404 [Abstract/FREE Full Text](http://www.ajnr.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czoxMDoiNDMvMTIvMTgxMCI7czo0OiJhdG9tIjtzOjIxOiIvYWpuci80My8xMi8xODE1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 13. 13.Chard M, Appendino JP, Bello-Espinosa LE, et al. Single-center experience with beta-propeller protein-associated neurodegeneration (BPAN): expanding the phenotypic spectrum. Mol Genet Metab Rep 2019;20:100483 doi:10.1016/j.ymgmr.2019.100483 pmid:31293896 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1016/j.ymgmr.2019.100483&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=31293896&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 14. 14.Kimura Y, Sato N, Ishiyama A, et al. Serial MRI alterations of pediatric patients with beta-propeller protein associated neurodegeneration (BPAN). J Neuroradiol 2021;48:88–93 doi:10.1016/j.neurad.2020.04.002 pmid:32335071 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1016/j.neurad.2020.04.002&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=32335071&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 15. 15.Russo C, Ardissone A, Freri E, et al. Substantia nigra swelling and dentate nucleus T2 hyperintensity may be early magnetic resonance imaging signs of **β**-propeller protein-associated neurodegeneration. Mov Disord Clin Pract 2019;6:51–56 doi:10.1002/mdc3.12693 pmid:30746416 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1002/mdc3.12693&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=30746416&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 16. 16.Christoforou S, Christodoulou K, Anastasiadou V, et al. Early-onset presentation of a new subtype of **β**-propeller protein-associated neurodegeneration (BPAN) caused by a de novo WDR45 deletion in a 6-year-old female patient. Eur J Med Genet 2020;63:103765 doi:10.1016/j.ejmg.2019.103765 pmid:31536831 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1016/j.ejmg.2019.103765&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=31536831&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 17. 17.Maroofian R, Gubas A, Kaiyrzhanov R, et al. Homozygous missense WIPI2 variants cause a congenital disorder of autophagy with neurodevelopmental impairments of variable clinical severity and disease course. Brain Commun 2021;3:fcab183 doi:10.1093/braincomms/fcab183 pmid:34557665 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1093/braincomms/fcab183&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=34557665&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 18. 18.Liu Z, Shen H, Lian T, et al. Iron deposition in substantia nigra: abnormal iron metabolism, neuroinflammatory mechanism and clinical relevance. Sci Rep 2017;7:1–7 doi:10.1038/s41598-016-0028-x [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1038/srep41926&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=28127051&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 19. 19.Thomsen MS, Andersen MV, Christoffersen PR, et al. Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons. Neurobiol Dis 2015;81:108–18 doi:10.1016/j.nbd.2015.03.013 pmid:25801802 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1016/j.nbd.2015.03.013&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=25801802&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) 20. 20.Bodea L, Wang Y, Linnartz-Gerlach B, et al. Neurodegeneration by activation of the microglial complement: phagosome pathway. J Neurosci 2014;34:8546–56 doi:10.1523/JNEUROSCI.5002-13.2014 pmid:24948809 [Abstract/FREE Full Text](http://www.ajnr.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Njoiam5ldXJvIjtzOjU6InJlc2lkIjtzOjEwOiIzNC8yNS84NTQ2IjtzOjQ6ImF0b20iO3M6MjE6Ii9ham5yLzQzLzEyLzE4MTUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 21. 21.Ward RJ, Zucca FA, Duyn JH, et al. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 2014;13:1045–60 doi:10.1016/S1474-4422(14)70117-6 pmid:25231526 [CrossRef](http://www.ajnr.org/lookup/external-ref?access_num=10.1016/S1474-4422(14)70117-6&link_type=DOI) [PubMed](http://www.ajnr.org/lookup/external-ref?access_num=25231526&link_type=MED&atom=%2Fajnr%2F43%2F12%2F1815.atom) * © 2022 by American Journal of Neuroradiology