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WHITE PAPER

ACRWhite Paper on Magnetoencephalography and
Magnetic Source Imaging: A Report from the ACR

Commission on Neuroradiology
J.A. Maldjian, R. Lee, J. Jordan, E.M. Davenport, A.L. Proskovec, M. Wintermark, S. Stufflebeam, J. Anderson,

P. Mukherjee, S.S. Nagarajan, P. Ferrari, W. Gaetz, E. Schwartz, and T.P.L. Roberts

ABSTRACT

SUMMARY:Magnetoencephalography, the extracranial detection of tiny magnetic fields emanating from intracranial electrical activity
of neurons, and its source modeling relation, magnetic source imaging, represent a powerful functional neuroimaging technique, able
to detect and localize both spontaneous and evoked activity of the brain in health and disease. Recent years have seen an increased
utilization of this technique for both clinical practice and research, in the United States and worldwide. This report summarizes cur-
rent thinking, presents recommendations for clinical implementation, and offers an outlook for emerging new clinical indications.

ABBREVIATIONS: ACR ¼ American College of Radiology; AD ¼ Alzheimer disease; ASD ¼ autism spectrum disorder; CMS ¼ Centers for Medicare and
Medicaid Services; CPT ¼ Current Procedural Terminology; ECD ¼ equivalent current dipole; iEEG ¼ intracranial electroencephalography; MEG ¼ magnetoence-
phalography; MSI ¼ magnetic source imaging

Magnetoencephalography (MEG) is a noninvasive method
of detecting neural activity in the brain with millisecond

time resolution. The current clinically approved indications
for MEG are localization of epileptic foci and localization of el-
oquent cortices for presurgical planning. The goal of the MEG
community at large is to advance current clinical practices and
to develop new clinical indications for MEG. Multiple groups
have researched the use of MEG in a variety of clinical disor-
ders including concussion, Alzheimer’s disease, autism, and
others. Additionally, MEG can be used as an adjunct to other
therapies, such as neuromodulation. Multispecialty collaboration

is necessary for the successful development of a comprehensive
clinical MEG program. The team includes clinicians, MEG sci-
entists, and technologists, often with complementary and/or
overlapping skill sets. MEG centers across the United States op-
erate in various clinical departments. Close collaboration with
Radiology, Neurology, and Neurosurgery has been instrumental
in advancing MEG for clinical use. While there are several pub-
lications outlining good clinical practice for acquiring and ana-
lyzing clinical MEG data, at the current time, implementation
varies across sites. In this report, we describe the current clinical
landscape for MEG and emerging applications, as well as pro-
vide recommendations for the composition and training of
multidisciplinary teams involved in the performance and inter-
pretation of clinical MEG studies, including the roles of the phy-
sician, MEG scientist, and MEG technologist in performance of
current and future clinically approved MEG studies. We advo-
cate that clinical reporting should be performed after consultation
with the entire team, including technologists, MEG scientists, and
physicians.

Prior American College of Radiology Involvement in MEG
In 2001, with the joint support of the American College of
Radiology (ACR), American Society of Neuroradiology, and
American Academy of Neurology, 2 neuroradiologists (Roland Lee,
Steven Stufflebeam) and 1 neurologist (Michael Funke) testified at
the Centers for Medicare and Medicaid Services (CMS) in support
of 3 new Current Procedural Terminology (CPT) codes for MEG:

95965 (MEG recording and analysis of spontaneous brain
activity)
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95966 (MEG recording and analysis of evoked magnetic fields,
single technique)
95967 (MEG recording and analysis of evoked magnetic fields,
each additional technique, after invoking 95966 once).

The Relative Value Scale Update Committee reviewed these
codes at the April 2001 meeting, and CMS implemented the codes
and payment rates in 2002, with subsequent scheduled reviews and
revisions of the payment rates.

fMRI versus MEG
fMRI has been in clinical use for over 2 decades, slightly predat-
ing the clinical adoption of MEG. Clinical indications for fMRI
involve presurgical mapping of eloquent cortex. While fMRI pro-
vides complementary information to MEG, the underlying neuro-
physiologic basis of the signal is quite different. Functional MR
imaging relies on changes in blood flow associated with neuronal
activity, making it an indirect measure of brain function, whereas
MEG provides a more direct measure. Both modalities can provide
accurate delineation of eloquent cortex. However, MEG is uniquely
suited to identification of epileptogenic activity. Mapping of elo-
quent cortices can be performed at the same time as the epilepsy
study with MEG. Clinical MR imaging scans are obtained sepa-
rately from fMRI and MEG studies, with distinct CPT codes, and
provide anatomic reference for functional maps. For both fMRI
and MEG, robust paradigms exist for motor, sensory, and language
mapping. For both modalities, areas of activation are mapped onto
a structural MR imaging study as part of the presurgical evaluation.

Current Indications for MEG and Magnetic Source
Imaging
Presurgical Mapping of Epileptogenic Zones. MEG is clinically
approved for preoperative planning in patients with intractable,
or drug-resistant, epilepsy. The millisecond time resolution of
MEG is ideally suited to capture bursts of abnormal neuroelectri-
cal activity, as seen in epilepsy, and the spatial precision of mag-
netic source imaging (MSI) allows the accurate localization of the
epileptogenic zone(s) (ie, seizure-generating tissue).1 The onset of
each interictal epileptiform discharge is projected to source space
(ie, brain space) as an equivalent current dipole (ECD) to visual-
ize the location of potential seizure onset zone(s). In this way,
MEG and MSI can provide unique information for presurgical
planning in intractable epilepsy. MEG is optimally beneficial dur-
ing presurgical planning for cases in which common noninvasive
modalities result in an inconclusive hypothesis regarding epilep-
togenic zone location, MR imaging–negative (ie, nonlesional)
cases, cases in which MR imaging identifies multiple lesions (eg,
tuberous sclerosis), and patients with large lesions, anatomical
malformations, and/or prior resection.1-3

Empirical investigations have found that MEG and MSI con-
tribute added clinical value during presurgical planning in patients
with intractable epilepsy, as surgical resection of the epileptogenic
zone(s) can eliminate or reduce seizures.4-6 Presurgical planning
often involves the acquisition of multiple neuroimaging modalities
(eg, MR imaging, FDG-PET, ictal-SPECT, single-photon emission
CT). These data are used to plan intracranial electroencephalogra-
phy (iEEG), in which a grid of subdural electrodes and/or
depth electrodes is implanted directly into the brain to confirm

epileptogenic zone localization. Recent studies have revealed good
concordance between MEG and iEEG in localizing epileptogenic
activity, bolstering MEG’s potential as an alternative, noninvasive
tool for preoperative planning.7

Inclusion of MEG in the presurgical neuroimaging battery
bestows better clinical outcomes and correlates with postoperative
seizure freedom.8,9 Specifically, resection patients in whom the
MEG dipole cluster was completely sampled by iEEG had a strik-
ingly higher chance of seizure freedom relative to patients with
incomplete/no iEEG sampling. A similar finding was observed for
patients in whom the MEG dipole cluster was completely resected
relative to those with partial/no resection of the MEG cluster.9

Finally, patients with a single tight dipole cluster, those with a
cluster that had stable orientation perpendicular to the closest
major sulcus, and those with agreement between MEG and iEEG
localization were more likely to be seizure-free postresection.

Presurgical Mapping of Eloquent Cortices.MEG is used to non-
invasively map the eloquent cortex in patients before they
undergo epilepsy or brain tumor surgery. The goals are to min-
imize deleterious postoperative functional outcomes and/or
identify whether functional reorganization has occurred.
Specifically, localization of somatosensory, motor, auditory,
and/or visual cortices, as well as localization and lateralization
of language cortices may be performed to predict postsurgical
outcomes and optimize the preservation of these functions
postoperatively.10

Eloquent cortex mapping requires the application of specific
tasks during MEG recording that are designed to elicit the func-
tions of interest. These tasks generate magnetic evoked fields, and
MSI is employed to localize stereotyped deflections in, or compo-
nents of, the evoked magnetic field. The ability to capture differ-
ent neurophysiological responses within 1 recording is a distinct
advantage of MEG relative to fMRI, and MEG may be superior
for functional mapping in patients who have cerebrovascular
malformations or tumors near the functional cortex. However,
MEG and fMRI often serve complementary roles in eloquent cor-
tex mapping, and their amalgamation can enhance the reliability
of functional localization.11,12

With respect to each function, somatosensory responses reli-
ably map to the posterior bank of the central sulcus contralateral
to the side of stimulation in a manner that follows expected
somatotopic organization. In a similar fashion, motor responses
localize to the primary motor cortex contralateral to the side of
movement. Both contralateral and ipsilateral auditory responses
may be localized and map to Heschl’s gyri. Visual responses local-
ize to the primary visual cortex contralateral to the stimulated vis-
ual hemifield near the calcarine fissure.13,14 Importantly, prior
research has found that such MEG-based localizations have high
concordance with intraoperative cortical mapping. Finally, a dis-
tributed network of bilateral cortical regions often underlies lan-
guage processing. Receptive language responses often localize to
the posterior superior temporal gyrus (ie, Wernicke’s area),
supramarginal gyrus, and angular gyrus, while expressive lan-
guage responses often map to the pars triangularis and pars oper-
cularis in the inferior frontal cortex (ie, Broca’s area). A laterality
index is computed to determine hemispheric dominance of
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language function. Multiple studies have demonstrated high con-
cordance between MEG-based language mapping and invasive
procedures (eg, intracarotid amobarbital procedure or Wada),
favoring MEG as a noninvasive option for language mapping and
lateralization.10,15-18

A key transformative step is the integration of source-modeled
MEG data with MR imaging to yield MSI, either by the overlay of
single equivalent dipole sources or by statistical mapping of either
spontaneous or event-related changes.19,20 This renders MEG data
directly interpretable by the neuroradiologist in a fashion very
analogous to fMRI, but combining both mapping of functional,
eloquent cortex, as well as the sources of interictal spontaneous
discharges (dysfunctional MR imaging).

CLINICAL MEG RECOMMENDATIONS
Roles, Training, and Certification/Accreditation
Qualifications of Physicians Interpreting Clinical MEG Studies.
Physicians interpreting and reporting clinical MEG studies should
have appropriate medical licensure and proper training for the clini-
cal application. For radiologists, this may include specialized clinical
knowledge of neurophysiology, neuroanatomy, brain mapping,
neuropsychology, and image acquisition and interpretation such as
required through the American Board of Radiology Subspecialty
Certification in Neuroradiology. In addition, MEG-specific training
is recommended to include supervised learning or clinical practice
of at least 50 MEG studies for the specific indication being reported.
Alternatively, a minimum of 2 years of experience interpreting clini-
cal fMRI or MEG brain mapping studies is recommended.

Qualifications of MEG Scientists Involved in Clinical MEG Studies.
MEG scientists involved in clinical MEG studies should be well-
versed in signal processing, source analysis, neurophysiology, cog-
nitive neuroscience, image processing, physics, and other scientific
aspects of MEG and its application to patient care. In addition,
MEG-specific training is recommended to include supervised
learning or clinical practice of at least 50 MEG studies for the spe-
cific indication being reported, which can also be fulfilled through
a minimum of 2 years of experience in the source modeling of
MEG studies by a postdoctoral fellowship with a clinical MEG
component, or through rotations at clinical MEG facilities.

Qualifications of MEG Technologists. The MEG technologist
should have a background in either EEG or imaging (eg, MR
imaging) or related disciplines. Supervised learning or clinical
practice of at least 50 MEG studies, including a review of the
principles of MEG technology, technical aspects of the MEG
systems, patient preparation, data acquisition, operational rou-
tines, tuning procedures, testing procedures, troubleshooting,
artifact identification, prevention, and elimination, data storage,
and basic source localization procedures. Alternatively, a mini-
mum of 6months of supervised clinical experience in an active
MEG center is recommended.

Procedure/Workflow of Clinical MEG Examination,
Analysis, and Reporting
MEG-guided localization of epileptogenic zones involves several
key steps. Before recording, surface EEG electrodes and head

position indicator coils are affixed to manufacturer-specified
locations on the patient’s head. These coils generate a specific fre-
quency during MEG recording to allow for head localization. The
patient’s head shape and location of head position indicator coils
is digitized for subsequent co-registration of MEG and structural
MR imaging data. Simultaneous MEG and scalp EEG data are
recorded. Typically, 40–120minutes of spontaneous (ie, resting-
state) data are collected. Due to the limited duration of recordings
and the movement-related artifact introduced by seizures, ictal
discharges are rarely captured. Rather, MEG recordings primarily
capture interictal epileptiform discharges.8 To increase the yield
of interictal epileptiform discharges during the scan, patients are
asked to come sleep-deprived and sleep in the scanner.21 These
data are preprocessed to remove noise and co-register the MEG data
with a structural MR imaging (typically a 3D T1). Preprocessing
algorithms and steps vary depending on the manufacturer. A profes-
sional with specialized training (eg, epileptologist, neurophysiologist,
etc) reads the time-series EEG andMEG data and identifies epileptic
discharges. The identified discharges are localized to source space
via the ECD model, referred to as modeling in this article.22

Modeling can be completed by anyone with specialized training in
the neuroscience, physics, and mathematical concepts behind the
dipole model (eg, scientist, physician, technologist). Dipoles that
meet statistical cutoff criteria (eg, goodness of fit, volume of confi-
dence) are displayed on a structural MR imaging scan, which can be
exported to PACS.

Dipoles may form clusters within a specific region. The clus-
tering of 5 or more dipoles within a region is considered a reliable
indicator of an epileptogenic zone.23 Both the tightness and ori-
entation of the dipoles within a cluster have clinical relevance.1,9

The location of these dipoles and characteristics of any clusters
formed are reported by a physician. A suggested template for
reporting is located in the Appendix.

In contrast to presurgical mapping of epileptogenic zones,
which relies on resting-state recordings, eloquent cortex mapping
relies on task-based recordings. The patient should be awake and
alert. During a task, identical or similar stimuli are repetitively
delivered to the patient, and a corresponding trigger (eg, number)
is time-stamped into the data. Offline, the data are epoched into
meaningful windows of time surrounding each stimulus, baseline-
normalized, and averaged together to enhance the signal-to-noise
ratio. This distinguishes the magnetic evoked field generated by
the stimuli, and components of the field are modeled to localize
the functional cortex. The time and location of each component
modeled are reported by a physician.

Somatosensory cortex mapping most often employs brief elec-
trical stimulations to the median nerve. However, stimulation of
the posterior tibial nerve and/or mechanical stimulation of the
hand, foot, or other body regions may also be performed. To map
the motor cortex, the patient is asked to perform a simple move-
ment such as pressing a button, tapping a finger, or moving a
foot at either a self-paced or visually- or auditorily-cued time
interval. For auditory cortex mapping, often 1000-Hz tones are
briefly presented through inserted ear tubes at 60 dB above the
patient’s hearing threshold, either monaurally or binaurally.10,13

To map the visual cortex, stimuli, often checkerboards, are pre-
sented on a projector screen to the full visual field, each hemifield,
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or each quadrant. Language cortex mapping may utilize auditory
and/or visual stimuli and can be grouped into 2 categories: recep-
tive or expressive. Receptive language tasks include passively lis-
tening to words or silently reading words presented on the
projector screen. Expressive language tasks include covert verb
generation and picture naming.10,14,24

Many of the patients undergoing MEG have epilepsy that is
poorly controlled by medications. It is important that safeguards be
put in place for responding to medical emergencies. This includes
the availability of emergency personnel and supplies depending on
the setting.

Billing and Reimbursement
As noted in the Background, since 2002, the CMS has authorized
and implemented 3 CPT codes and their payment rates for MEG:
95965, 95966, 95967. Using these 3 codes, clinical MEG is a well-
established reimbursable procedure and is accepted as the standard
of care in evaluation of patients with epilepsy and in the presurgical
mapping of eloquent cortices.

Quality Improvement and Quality Control
A critical component of establishing and maintaining a high-
quality clinical MEG program is to invest in the training and
education of all team members. Most manufacturers offer train-
ing programs for new sites. The American Board of Registration
of Electroencephalographic and Evoked Potential Technologists
offers a MEG technologist certification program. Both the
American Clinical MEG Society and the American Society for
Functional Neuroradiology offer clinical guidelines, continuing
education at annual meetings, and clinical MEG fellowship train-
ing programs for neurologists and neuroradiologists, respectively.
Other relevant conferences include the biannual meeting of the
International Society for the Advancement of Clinical MEG
and the biannual International Conference on Biomagnetism. A
number of excellent publications are available, including the
MEG-EEG Primer textbook, Clinical Magnetoencephalography
and Magnetic Source Imaging textbook, the November 2020 issue
of the Journal of Clinical Neurophysiology, and clinical MEG
guideline articles published by the International Federation
of Clinical Neurophysiology and American Clinical MEG
Society.13,24,25

A clear protocol for assessing the technical quality of the data
is vital. Noise measurements and empty room recordings are
often collected daily or before recording each patient to monitor
changes in the environment and identify issues with equipment.
During data acquisition, the position of the patient’s head
within the MEG helmet is monitored for proper placement,
observations of artifact and noise are documented, and averages
of events during evoked testing may be computed online to vis-
ually inspect for the presence of the expected magnetic evoked
fields. Routine (eg, monthly) quality-assurance testing of the
digitization equipment, MEG system, and software is often con-
ducted by utilizing a phantom for recordings. Collaborative
interdepartmental conferences should also be held regularly to
compare MEG results with clinical outcomes (eg, stereoelec-
troencephalography data).

EMERGING INDICATIONS
Concussion
Many articles in the peer-reviewed literature show that MEG can
objectively diagnose concussions (mild traumatic brain injury)
with significantly more sensitivity (about 85% sensitivity) than
the relatively insensitive standard neuroimaging techniques such
as CT or MR imaging.26-33 EEG has long demonstrated that low-
frequency activity in the delta-band (1–4Hz) is abnormal in
awake, alert adults. Studies in animal models confirm that deaf-
ferentation of neurons due to traumatic injury to axons or block-
age of cholinergic transmission will generate these slow/delta-
waves.31,34 Resting-state MEG more sensitively detects delta
waves than EEG, with about 85% sensitivity in diagnosing con-
cussions compared with normal controls, even in single subjects
when using an automated voxelwise algorithm, which also local-
izes the areas of abnormal slow-waves.26

Another MEG finding in patients with concussion is excessive
synchronous resting-state high-frequency gamma-band activity
(30–80Hz) in certain frontal and other brain regions, which may
be due to selective vulnerability of inhibitory GABAergic inter-
neurons due to head trauma.29

Resting-state functional connectivity studies with MEG reveal
various patterns of aberrant functional connectivity in patients
with mild traumatic brain injury, likely reflecting differing mech-
anisms of injury, including disruption of networks, and injury to
inhibitory GABAergic interneurons.32,33

Post-Traumatic Stress Disorder
Post-traumatic stress disorder affects about 7% of American adults
during their lifetime and is especially prevalent in combat veter-
ans. Compared with normal controls, MEG in patients with post-
traumatic stress disorder shows differences in resting-state neuro-
circuitry, including hyperactivity in the amygdala, hippocampus,
posterolateral orbitofrontal cortex, dorsomedial prefrontal cortex,
and insular cortex in high-frequency (beta and gamma) bands;
hypoactivity from the ventromedial prefrontal cortex, frontal pole,
dorsolateral prefrontal cortex in high-frequency bands; and hypo-
activity in the precuneus, dorsolateral prefrontal cortex, temporal
and frontal poles, and sensorimotor cortex in alpha and low-fre-
quency bands.35

Autism Spectrum Disorder
The physical properties of MEG offer sensitivity not only to spa-
tial localization of detected signals but also characterization in
terms of the time course and spectral content of such brain activ-
ity. As such, it may allow description of not just functional cen-
ters but also “when” the brain activity is occurring and, indeed,
“what” is the nature of such activity. This opens up considerable
promise for application to psychiatric disorders, commonly with
no MR imaging–visible structural anomaly. One promising target
disorder is autism spectrum disorder (ASD), a highly prevalent
(�2%) neurodevelopmental disorder. Although there is indeed
an ultimate possibility (and current exploration) of identifying
early electrophysiologic predictors of ASD in infants and young
children, an alternative promising role for MEG lies in the strati-
fication, or subtyping, of the remarkably heterogeneous ASD
population. Such stratification may have value in terms of
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potential enrichment of clinical trials for behavioral/pharmaceu-
tical therapies as well as potentially providing early “brain-level”
indices of drug “target-engagement” as a predictor of ultimate ef-
ficacy. Considerable promise is shown in the latency of simple
sensory evoked responses (eg, the auditory cortex 50-ms [M50]
and 100-ms [M100] components, which tend to be delayed in
children with ASD, perhaps triggering a cascade of delayed neural
communication, with ultimate behavioral sequelae).36-38

Dementia
Dementia is a neurodegenerative condition that usually affects
people aged older than 65 years that causes major cognitive dys-
function, loss of independence, and reduced quality of life. The
ever-increasing proportion of aged people in modern societies is
leading to a substantial increase in the number of people affected
by dementia and Alzheimer’s disease (AD) in particular, which is
the most common cause for dementia. Several resting-state MEG
studies have shown frequency-specific alterations in local and
long-range neural synchrony in various dementias, even at the ear-
liest prodromal stages of AD manifestation.39 Increased synchrony
delta-theta bands and decreased alpha or beta bands are consis-
tently reported not only in patients with the AD neuropathological
spectrum including those who are asymptomatic but carry higher
risk of AD, as well as in clinically symptomatic individuals with
positive AD biomarkers,40-46 but also in patients with variants of
primary progressive aphasia, a form of dementia that impacts lan-
guage function.47 Disruption of information flow quantified by
MEG source imaging may also underlie clinical symptoms in
AD.48 Studies have also reported task-induced MEG activity
changes in AD with mismatch paradigms that highlight the trans-
lational potential for neurophysiological “signatures” of dementia,
to understand disease mechanisms in humans and facilitate experi-
mental medicine studies.49

CONCLUSIONS
MEG and MSI provide a powerful tool for characterizing brain
activity in health and disease. Clinical applications as of this date
are in the localization of spontaneous epileptiform activity as part
of surgical work-up of patients with seizure disorders as well as
presurgical mapping of eloquent cortex for patients undergoing
resective surgery of tumors, AVMs, etc. However, there are many
emerging applications being researched currently.

A neuroradiologist can be a key member of the team conduct-
ing and interpreting MEG studies. Promising future areas of
MEG/MSI application will also likely capitalize on the neuroradi-
ologist’s ability to work in a multidisciplinary team, integrating
anatomic, physiologic, functional, and clinical information.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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APPENDIX

Sample MEG Report

Patient:
Date of Birth:
MRN:
Acc#:

EXAM: MAGNETOENCEPHALOGRAPHY (MEG)

DATE OF EXAM:

History and reason for Study:
�Copy from Tech report�

MEG is performed as part of presurgical planning.

Technique:
The Magnetoencephalography (MEG) scan was performed at ��.
There were [] minutes of spontaneous magnetoencephalography
(MEG) with electroencephalograph (EEG) data acquired with a
�� MEG system and individual/cap EEG electrodes. The patient
was asked to be sleep-deprived before the appointment.

Somatosensory: Somatosensory functioning was assessed by

using electrical stimulation of the right and left median nerves,
each median nerve was tested twice for waveform reproduction.
200 stimuli were delivered at 800- to 1100-ms intervals. 200 trials

of 300ms were averaged with a prestimulus baseline of 100ms
and a 200-ms poststimulus time.

Language: Receptive language fields were obtained by binau-
ral presentation of 180 audio words. The subject was tested twice,
once in a passive listening mode, and again with the task to
overtly repeat 5 target words, when presented. At least 120 trials
were averaged for each test with a 500 seconds prestimulus base-
line and 1000ms poststimulus time.

Motor: The patient was instructed to press a button pad with
index finger of their right and left hand. There were 2 trials run
for waveform reproduction. The rate of tapping was deliberately
varied but averaged about one tap every 2–3 seconds. Each epoch
was 2 seconds capturing 100 button press stimuli.

Auditory: 1000Hz tones were generated and delivered mon-
aurally without masking at 60-dB hearing loss to ear inserts.
The tone burst consisted of a 250-ms duration tone with a
15-ms rise/fall time. The tone burst was repeated 100 times,
delivered once every 2 seconds. One hundred trials were aver-
aged with a 200-ms prestimulus baseline and 1800ms poststi-
mulus time.

Visual: Pattern reversal stimuli were projected into the
shielded room, reflected via one mirror onto an opaque white
screen, and then reflected directly into the patient’s eyes. The
patient [did/did not] require vision correction glasses [rx L/rx
R]. The checkerboard had a 50° radius and size of the projected
checkerboard squares were approximately 5°, which were alter-
nated with a refresh rate of 0.4Hz. Six hundred epochs of hemi-
field stimulation were recorded for each hemifield with a 100-ms
prestimulus baseline and 3000-ms poststimulus time following
each pattern shift. The patient was asked to fixate on a single
spot located just to the left or right of the pattern checkerboard
image for hemifield studies.

All recorded data were analyzed utilizing �� software. MEG
activity was superimposed on the patient’s 3D-volumetric brain
images obtained on the MR imaging performed on [].

Artifacts:
�delete if none�

Comparisons:
� include MR imaging, fMRI, PET, SPECT �

FINDINGS:

Interictal Findings:
The patient was awake, drowsy, and sleeping during the record-

ing. Epileptiform discharges [were/were not] observed during
spontaneous MEG recordings. [] selected epileptiform discharges

in the MEG were mapped by using a single equivalent current
dipole (ECD) model. A single dipole was selected to represent

each epileptiform discharge. The dipole selection criteria
included a goodness of fit of 80% or better, and a confidence vol-

ume less than 1 cm3. Dipole locations were calculated and pro-
jected onto the patient’s MR imaging where they appear as

yellow triangles for interictal spikes.

Interictal Epileptiform Discharge Source Modeling Showed
Dipoles From:
Tight/Loose/Scattered cluster in the left/right ��� with stable/
variable perpendicular/oblique/parallel orientation.

Ictal Findings:
No seizures were captured.

Somatosensory Findings:
All runs produced robust responses with consistent mapping of

corresponding peaks for each run.
For stimulation of the left thumb, the latency of N20m

response was ��� msec.
For stimulation of the left thumb, the latency of N30m

response was ��� msec.
For stimulation of the right thumb, the latency of N20m

response was ��� msec.
For stimulation of the right thumb, the latency of N30m

response was ��� msec.

Somatosensory Response Source Modeling:
Localized to expected locations.

Language Findings:
ECDmodels were calculated every millisecond from 250- to 750-
ms poststimulus onset independently for each sensor’s hemi-

sphere corresponding to left and right evoked fields. All ECD
estimates meeting the statistical thresholds and localizing to tem-

poral cortical areas were entered into laterality quantification.

Language Response Source Modeling:
Receptive language with active word recall task localized to the
left/right temporal lobe with a laterality index of1/� X.XX, con-

centrated in theWernicke area.
Receptive language with passive listening localized.
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Motor Findings:
Movement of the left second digit generated a good response.

The motor response was seen with a latency of ��� ms following
the activation of the button.

Movement of the right second digit generated a good response.
The motor response was seen with a latency of ��� ms following

the activation of the button.

Motor Response Source Modeling:
Localized to expected locations.

Auditory Findings:
Trials for each ear were performed. The N100m response was a

sustained response. The best fields picked to represent the contra-
lateral responses had a latency of ��� ms for the left ear stimulation

and ��� ms for the right ear stimulation. The best fields picked to
represent the ipsilateral responses had latency of ��� ms for the left

ear stimulation and ��� ms for the right ear stimulation.

Auditory Response Source Modeling:
Localized to expected locations in the primary auditory cortex.

Visual Findings:
All runs produced robust responses with consistent mapping of
corresponding peaks for each run.

For right visual hemifield mapping, the N75m, P100m, and
N145m responses were easily identified and had typical latencies,
waveform morphology, topographic field maps, and dipole
moments.

For left visual hemifield mapping, the N75m, P100m, and
N145m had typical latencies, waveform morphology, topographic
field maps, and dipole moments.

Visual Response Source Modeling:
Localized appropriately to the primary visual cortex (V1).

IMPRESSION:
-attending, MD.
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