Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • AJNR Awards
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • AJNR Awards
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR at ASNR25 | Join us at BOOTH 312 and more. Check out our schedule

Research ArticleBrain Tumor Imaging

Identification of a Single-Dose, Low-Flip-Angle–Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma

Aliya Anil, Ashley M. Stokes, John P. Karis, Laura C. Bell, Jennifer Eschbacher, Kristofer Jennings, Melissa A. Prah, Leland S. Hu, Jerrold L. Boxerman, Kathleen M. Schmainda and C. Chad Quarles
American Journal of Neuroradiology October 2024, 45 (10) 1545-1551; DOI: https://doi.org/10.3174/ajnr.A8357
Aliya Anil
aFrom the Cancer System Imaging (A.A., C.C.Q.), The University of Texas MD Anderson Cancer Center, Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Aliya Anil
Ashley M. Stokes
bDivision of Neuroimaging Research and Barrow Neuroimaging Innovation Center (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ashley M. Stokes
John P. Karis
cDepartment of Neuroradiology (J.P.K.), Barrow Neurological Institute, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for John P. Karis
Laura C. Bell
dClinical Imaging Group (L.C.B.), Genentech Inc., San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Laura C. Bell
Jennifer Eschbacher
eDepartment of Neuropathology (J.E.), Barrow Neurological Institute, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jennifer Eschbacher
Kristofer Jennings
fDepartment of Biostatistics (K.J.), The University of Texas MD Anderson Cancer Center, Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kristofer Jennings
Melissa A. Prah
gDepartment of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Melissa A. Prah
Leland S. Hu
hDepartment of Radiology (L.S.H.), Division of Neuroradiology, Mayo Clinic Arizona, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Leland S. Hu
Jerrold L. Boxerman
iDepartment of Diagnostic Imaging (J.L.B.), Rhode Island Hospital, Providence, Rhode Island
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jerrold L. Boxerman
Kathleen M. Schmainda
gDepartment of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kathleen M. Schmainda
C. Chad Quarles
aFrom the Cancer System Imaging (A.A., C.C.Q.), The University of Texas MD Anderson Cancer Center, Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Chad Quarles
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Abstract

BACKGROUND AND PURPOSE: DSC-MR imaging can be used to generate fractional tumor burden (FTB) maps via application of relative CBV thresholds to spatially differentiate glioblastoma recurrence from posttreatment radiation effects (PTRE). Image-localized histopathology was previously used to validate FTB maps derived from a reference DSC-MR imaging protocol by using preload, a moderate flip angle (MFA, 60°), and postprocessing leakage correction. Recently, a DSC-MR imaging protocol with a low flip angle (LFA, 30°) with no preload was shown to provide leakage-corrected relative CBV (rCBV) equivalent to the reference protocol. This study aimed to identify the rCBV thresholds for the LFA protocol that generate the most accurate FTB maps, concordant with those obtained from the reference MFA protocol.

MATERIALS AND METHODS: Fifty-two patients with grade-IV glioblastoma who had prior surgical resection and received chemotherapy and radiation therapy were included in the study. Two sets of DSC-MR imaging data were collected sequentially first by using LFA protocol with no preload, which served as the preload for the subsequent MFA protocol. Standardized relative CBV maps (sRCBV) were obtained for each patient and coregistered with the anatomic postcontrast T1-weighted images. The reference MFA-based FTB maps were computed by using previously published sRCBV thresholds (1.0 and 1.56). A receiver operating characteristics (ROC) analysis was conducted to identify the optimal, voxelwise LFA sRCBV thresholds, and the sensitivity, specificity, and accuracy of the LFA-based FTB maps were computed with respect to the MFA-based reference.

RESULTS: The mean sRCBV values of tumors across patients exhibited strong agreement (concordance correlation coefficient = 0.99) between the 2 protocols. Using the ROC analysis, the optimal lower LFA threshold that accurately distinguishes PTRE from tumor recurrence was found to be 1.0 (sensitivity: 87.77%; specificity: 90.22%), equivalent to the ground truth. To identify aggressive tumor regions, the ROC analysis identified an upper LFA threshold of 1.37 (sensitivity: 90.87%; specificity: 91.10%) for the reference MFA threshold of 1.56.

CONCLUSIONS: For LFA-based FTB maps, an sRCBV threshold of 1.0 and 1.37 can differentiate PTRE from recurrent tumors. FTB maps aid in surgical planning, guiding pathologic diagnosis and treatment strategies in the recurrent setting. This study further confirms the reliability of single-dose LFA-based DSC-MR imaging.

ABBREVIATIONS:

CCC
concordance correlation coefficient
FTB
fractional tumor burden
LFA
low flip angle
MFA
moderate flip angle
PTRE
posttreatment radiation effects
rCBV
relative cerebral blood volume
ROC
receiver operating characteristic
sRCBV
standardized relative CBV
WHO
World Health Organization
  • © 2024 by American Journal of Neuroradiology
View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 45 (10)
American Journal of Neuroradiology
Vol. 45, Issue 10
1 Oct 2024
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Identification of a Single-Dose, Low-Flip-Angle–Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Aliya Anil, Ashley M. Stokes, John P. Karis, Laura C. Bell, Jennifer Eschbacher, Kristofer Jennings, Melissa A. Prah, Leland S. Hu, Jerrold L. Boxerman, Kathleen M. Schmainda, C. Chad Quarles
Identification of a Single-Dose, Low-Flip-Angle–Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma
American Journal of Neuroradiology Oct 2024, 45 (10) 1545-1551; DOI: 10.3174/ajnr.A8357

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Low-Flip-Angle CBV Threshold in Glioblastoma
Aliya Anil, Ashley M. Stokes, John P. Karis, Laura C. Bell, Jennifer Eschbacher, Kristofer Jennings, Melissa A. Prah, Leland S. Hu, Jerrold L. Boxerman, Kathleen M. Schmainda, C. Chad Quarles
American Journal of Neuroradiology Oct 2024, 45 (10) 1545-1551; DOI: 10.3174/ajnr.A8357
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (1)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Differenzierung zwischen Rezidiv und Therapieartefakten beim Glioblastom
    Neuroradiologie Scan 2025 15 02

More in this TOC Section

  • Temporal Evolution of Vestibular schwannoma
  • CE MRI for Brain Metastasis Detection
  • ASL Repeatability Reproducibility in Brain Tumors
Show more BRAIN TUMOR IMAGING

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire