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ABSTRACT

BACKGROUND AND PURPOSE: Accelerating the image acquisition speed of MR imaging without compromising the image quality is
challenging. This study aimed to evaluate the feasibility of contrast-enhanced (CE) 3D T1WI and CE 3D-FLAIR sequences recon-
structed with compressed sensitivity encoding artificial intelligence (CS-AI) for detecting brain metastases (BM) and explore the
optimal acceleration factor (AF) for clinical BM imaging.

MATERIALS AND METHODS: Fifty-one patients with cancer with suspected BM were included. Fifty participants underwent different
customized CE 3D-T1WI or CE 3D-FLAIR sequence scans. Compressed SENSE encoding acceleration 6 (CS6), a commercially available
standard sequence, was used as the reference standard. Quantitative and qualitative methods were used to evaluate image quality.
The SNR and contrast-to-noise ratio (CNR) were calculated, and qualitative evaluations were independently conducted by 2 neuro-
radiologists. After exploring the optimal AF, sample images were obtained from 1 patient by using both optimized sequences.

RESULTS: Quantitatively, the CNR of the CS-AI protocol for CE 3D-T1WI and CE 3D-FLAIR sequences was superior to that of the
CS protocol under the same AF (P, .05). Compared with reference CS6, the CS-AI groups had higher CNR values (all P, .05), with
the CS-AI10 scan having the highest value. The SNR of the CS-AI group was better than that of the reference for both CE 3D-T1WI
and CE 3D-FLAIR sequences (all P , .05). Qualitatively, the CS-AI protocol produced higher image quality scores than did the CS
protocol with the same AF (all P, .05). In contrast to the reference CS6, the CS-AI group showed good image quality scores until
an AF of up to 10 (all P, .05). The CS-AI10 scan provided the optimal images, improving the delineation of normal gray-white mat-
ter boundaries and lesion areas (P, .05). Compared with the reference, CS-AI10 showed reductions in scan time of 39.25% and
39.93% for CE 3D-T1WI and CE 3D-FLAIR sequences, respectively.

CONCLUSIONS: CE 3D-T1WI and CE 3D-FLAIR sequences reconstructed with CS-AI for the detection of BM may provide a more
effective alternative reconstruction approach than CS. CS-AI10 is suitable for clinical applications, providing optimal image quality
and a shortened scan time.

ABBREVIATIONS: AF ¼ acceleration factor; BM ¼ brain metastases; CE ¼ contrast-enhanced; CNR ¼ contrast-to-noise ratio; CS ¼ compressed SENSE; AI ¼
artificial intelligence; SENSE ¼ sensitivity encoding

In recent years, with the prolonged survival of patients with
cancer, the incidence of brain metastases (BM) has increased

substantially, and BM have become the most common intracranial
tumors in adults.1,2 BM have an important impact on the TNM-

staging and clinical therapy of tumors. In addition, the number and
size of BM are closely related to the choice of treatment method
(eg, stereotactic radiosurgery versus surgical excision).3 Therefore,
the early detection and accurate diagnosis of BM are vital.4

With its excellent soft tissue contrast and high-resolution imag-
ing capabilities, contrast-enhanced (CE) MR imaging has emerged
as the primary imaging technique for screening and diagnosing
BM. According to studies by Kaufmann et al,1 CE-T1WI sequen-
ces can provide high-contrast images and information on the loca-
tion, morphology, and blood supply of BM. CE-FLAIR sequences
have better visibility of leptomeningeal metastases and superficial
cortical metastases. Moreover, 3D MR imaging scanning is more
sensitive than 2D scanning, and it offers the advantage of being
able to detect small BM.5,6 However, the time-consuming image
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acquisition of 3D sequences can limit clinical applications under
certain circumstances, especially in patients who cannot remain
stationary for a long time due to pain or a disturbance of
consciousness.7

Accelerating the image acquisition speed of MR imaging with-
out reducing the image quality has always been challenging.
Several image acquisition and postprocessing technologies have
been developed over the past few decades, with 2 of the more in-
fluential developments being parallel imaging and compressed
sensing.8 In particular, compressed sensitivity encoding (CS),
based on the principle of compressed sensing and the commonly
used sensitivity encoding (SENSE) technology, has been used to
optimize MR imaging scanning sequences of the brain, liver, and
nerves.9-11 CS implements random undersampling in k-space
and capitalizes on the sparsity of signals during reconstruction.
By using wavelet transforms, CS distinguishes between signal and
noise. This strategy allows CS to accelerate the imaging process
by operating at a sampling rate obviously lower than that pre-
scribed by the Nyquist sampling theorem, and this enables the
reconstruction of complete signals from limited data, reducing
the acquisition time without compromising the SNR, especially at
higher acceleration factors (AFs).12 Compared with traditional
acquisition, CS was shown to reduce the acquisition time of 3D
T1-echo-spoiled gradient-echo and 3D T2-FLAIR sequences for
brain tumors by 35% (2:56minutes versus 4:43minutes) and 25%
(3:36minutes versus 4:33minutes), respectively, without sacrific-
ing image quality.7 Integrating artificial intelligence (AI) into MR
imaging reconstruction has recently attracted considerable atten-
tion to the further acceleration of the scan speed.13,14 CS-AI is a
novel reconstruction algorithm that applies an adaptive CS net-
work approach inspired by CS theory to reconstruct images,
builds on the iterative shrinkage-thresholding algorithm (ISTA)-
Net framework developed by Zhang et al,15 and introduces strong
prior information. It has demonstrated superior performance in
reconstructing images from highly undersampled k-space data,
improving the speed and quality of the reconstruction.16

To further improve the image scanning sequences of BM, we
applied CS-AI technology to prospectively scan patients to
achieve a balance between shortening the scanning time and
improving the image quality. Therefore, the purposes of this
study were to acquire highly accelerated CE 3D-T1WI and CE
3D-FLAIR images by using CS-AI framework reconstruction and
to evaluate the image quality of CS-AI with different and high
AFs, compared with those of the CS technique, to explore the
optimal AF for the clinical imaging of BM.

MATERIALS AND METHODS
This prospective study was approved by our institution's review
board (ID: 22K036-001), and written informed consent was
obtained from all participants.

Patient Selection
From January to November 2022, we recruited 60 patients with
cancer with suspected BM for brain MR imaging examinations.
Five patients who exhibited BM disappearance and 4 patients
with severe imaging artifacts were excluded from the study. The
criteria for determining BM are as follows: 1) new enhanced

lesions, increased size of existing lesions on follow-up CE MR
imaging, or decreased size or disappeared lesions after treatment;
2) lesions that were not artifacts or normally enhanced structures;
and 3) enhanced lesions occurring in the brain parenchyma.5

Finally, 51 patients (25 patients each in the CE 3D-T1WI and CE
3D-FLAIR groups and 1 patient in the ultimate optimized
sequences group) were enrolled.

Image Acquisition
All MR images of the patients were obtained by using a 3T MR
scanner (Ingenia Elition, Philips Healthcare) with 16-channel
head coils. The patients underwent a conventional MR imaging
examination, including 2D-T1WI, 2D-T2WI, 2D T2-FLAIR, and
DWI sequences. Enhanced scans were initiated 3minutes after a
single dose of gadolinium contrast injection (0.1mmol/kg
Gadovist at a rate of 1.0mL/s). A timing bolus was used to deter-
mine the precise onset of imaging post contrast administration.
Twenty-five patients underwent customized CE 3D-T1WI (3D
BrainVIEW T1-weighted TSE, Philips Healthcare) sequence scan-
ning, whereas another 25 patients received customized CE 3D-
FLAIR (3D BrainVIEW FLAIR) sequence scanning (Fig 1). For
these sequences, we only altered the AF and the reconstruction
methods (CS or CS-AI); all other scanning parameters remained
unchanged. In addition, to account for the impact of contrast
agent concentration decay, the order of AFs (ranging from 6 to
12) used during the data acquisition was randomized. The denois-
ing level of the CS group was set to “system default,” and the CS-
AI group was set to “complete.” The thin section sagittal images
that could be 3D-reconstructed were obtained. The parameters of
the MR scanning are summarized in Tables 1 and 2.

CS-AI Algorithm
CS-AI reconstruction is an “adaptive CS network” based on
deep learning and inspired by CS theory.15 CS-AI replaces the
iterative optimization process and the traditional wavelet trans-
form in CS with a convolutional neural network to deal with
undersampled k-space data. The algorithm combines a multi-
scale sparse method based on learning with the compressed
sensing reconstruction method to ensure data consistency.17

The algorithm also integrates prior information, such as the
phase constraint and image background, and uses a deep neural
network to refine and modify previous assumptions. The CS-AI
was trained on approximately 740,000 MR images (1.5T and 3T)
of various anatomic regions and imaging contrasts.16 Its per-
formance is better than the traditional CS reconstruction algo-
rithm and deep learning reconstruction algorithms that do not
consider prior knowledge.16,18,19

Imaging Evaluation
Quantitative and qualitative image analysis methods were applied
to evaluate the image quality of the CE 3D-T1WI and CE 3D-
FLAIR sequences that were reconstructed by using CS and CS-AI
with different AFs (6–12). All images were transmitted and
reconstructed by using a picture archiving communication sys-
tem and an IntelliSpace Portal (V9; Philips Healthcare).

Quantitative Image Analysis. Two radiologists (Y.F. and M.W.)
with more than 8 years of experience performed quantitative
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image analyses. Regions of interest were placed on the lesion and
adjacent normal white matter, avoiding areas of hemorrhage, ne-
crosis, and vessels. The size of the delineated region of interest
depended on the lesion size, ranging from 4.00 to 21.00 mm2. To
obtain comparable measurements, the area of interest first
delineated on CS6 was copied and pasted in the corresponding
regions on the images reconstructed via CS and CS-AI technol-
ogy with different AFs. The standard deviation used to represent
the noise and average signal intensity was recorded for each
region of interest group. Based on the regions of interest, the
SNR and contrast-to-noise ratio (CNR) were analyzed for objec-
tive evaluation by using Equations 120 and 221:

SNRlesion ¼ SIlesion
SDlesion

1)

CNRlesion white matter ¼ jSIlesion � SIwhite matterj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SDlesion
2 þ SDwhite matter

2
p2)

where SD stands for the standard deviation representing noise
and SI represents the signal intensity.

Qualitative Image Analysis. All images
were independently evaluated by 2 neu-
roradiologists (Y.M. and L.L.) with
more than 15 years of experience and
who were unaware of any clinical and
sequence information. A 5-point Likert
scale was used to grade the overall
image quality: 1 ¼ poor, nondiagnostic
image quality; 2¼ below average, inter-
pretable but limited; 3 ¼ average, inter-
pretable; 4 ¼ good; and 5¼ excellent
(including sharpness of gray-white
matter boundaries, sharpness of lesion
boundaries, and artifacts).22 Subjective
scores were independently assessed
twice by 2 neuroradiologists, with the 2
readings separated by 4weeks to avoid
recall bias. The average value was used
in a consistency test.

Statistical Analysis
All statistical analyses were performed
using the GraphPad 9.5.1 (GraphPad
Software) and MedCalc, version 19
(https://www.medcalc.org), statistical
software packages. The interobserver
consistency of the protocol images was
calculated using a weighted Cohen
kappa. The kappa value rating system
was as follows: a kappa value of ,0.2
indicated slight agreement; 0.21–0.40,
fair agreement; 0.41–0.60, moderate
agreement; 0.61–0.80, good agreement;
and 0.81–1.00, excellent agreement.23

The normality of quantitative parame-
ters and subjective scores was analyzed using the Shapiro–Wilk
test. The test results indicated that the SNR, CNR, and Likert
scale scores were not normally distributed. Therefore, the
Wilcoxon signed-rank test was used to compare the differences
between the SNR, CNR, and subjective scores of the CS-AI proto-
cols and CS at the same AF. The Friedman test was then used to
compare the quantitative values of the images reconstructed by
using the CS6 and CS-AI factors. In cases of statistical signifi-
cance, the Dunn pairwise post hoc test was used to perform mul-
tiple comparisons. The threshold for statistical significance was
set as P, .05.

RESULTS
Patient Characteristics
A total of 51 patients (27 men and 24 women; mean age, 57.226
8.05 years; age range, 38–73 years) were included in this study.
The primary malignancies included lung cancer (n ¼ 42), breast
cancer (n ¼ 6), colon cancer (n ¼ 1), malignant melanoma (n ¼
1), and kidney cancer (n¼ 1). Among them, 25 underwent accel-
erated CE 3D-T1WI by using the CS and CS-AI techniques, and
a further 25 patients underwent CS- and CS-AI-accelerated CE

FIG 1. Flowchart of the experimental design.
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3D-FLAIR imaging. After determining the optimal AF, 1 patient
was scanned by using both optimized sequences.

Quantitative Assessment
Figure 2 shows the quantitative analysis results of the SNR and
CNR for CS- and CS-AI-accelerated CE 3D-T1WI with differ-
ent AFs. Under the same AF, the SNR and CNR of the CS-AI
group were superior to those of the CS group (all P, .05),
except at AF8, for which there was no statistically significant dif-
ference between the SNR values of the CS8 and CS-AI8 sequen-
ces (P. .05). Compared with the reference sequence CS6, the
CS-AI groups had higher SNR and CNR values (all P, .05),
with the CS-AI10 protocol showing the highest quantitative
parameters.

Figure 3 shows the quantitative SNR and CNR analysis results
for the CS and CS-AI-accelerated CE 3D-FLAIR images with dif-
ferent AFs. With the increase of the AF, the benefits of the CS-AI
group continued up to AF10 (all P, .05) under the same AF
conditions. At AF¼12, the SNR values of both CS and CS-AI
decreased, and there was no statistical difference between the 2
groups (P. .05). Compared with the reference sequence CS6, the
CS-AI groups exhibited significantly higher SNR and CNR values
(all P, .05), with CS-AI10 being the most prominent.

In addition, for both the CE 3D-T1WI and CE 3D-FLAIR
sequences, as the AF increased, the SNR and CNR of the images
first increased and then decreased.

Qualitative Assessment
Between the 2 observers, the image scores of CE 3D-T1WI with
different AFs were in good agreement [kappa (95% confidence

interval)¼ 0.74 (0.68–0.80)], and the
image scores of CE 3D-FLAIR were in
excellent agreement [kappa (95% con-
fidence interval)¼ 0.82 (0.77–0.87)].
Figure 4 shows that for both CE 3D-
T1WI and CE 3D-FLAIR sequences,
the image quality of the CS-AI group
was superior to that of the CS group
under the same AF (all P, .05). No
statistically significant difference was
observed in the overall image quality
between the reference sequence CS6
and CS-AI12-accelerated CE 3D-
T1WI (P. .05). In contrast, the image
quality of all other CS-AI groups was
superior to that of the reference
sequence CS6 (all P, .05). Both neu-
roradiologists observed that CS-AI10
provided the best quality images
(P, .05), with improved sharpness at
the lesion boundaries and gray-white
matter connections compared with the
other acceleration protocols (Fig 5C1,
C2 and Fig 6C1, C2). Furthermore, in
the CS group, as the AF increased, the
gray-white matter junction of the CS10
and CS12 images became unsharp,

boundaries of the lesions started becoming blurred, and artifact
was more evident (Fig 5 and 6).

DISCUSSION
The clinical feasibility of CS-AI for the accelerated CE 3D-TIWI
and CE 3D-FLAIR imaging of BM was investigated, and the opti-
mal AF was explored by comparing CS and CS-AI technology
with different AFs (6–12). Quantitative and qualitative assess-
ments were used to analyze the acquired images to explore the
value of applying CS-AI technology for patients with BM.

The quantitative analysis showed that the parameters of CE
3D-T1WI and CE-FLAIR reconstruction accelerated by CS-AI10
were superior to those of the other AF sequences. In the qualitative
analysis, for the CE 3D-T1WI and CE 3D-FLAIR sequences, the
image quality obtained by the CS-AI technique with different AFs
was equal to or better than the overall image quality of the refer-
ence CS6, which indicated that the image quality obtained by the
CS-AI protocol was at least comparable with that of the reference
sequence. In addition, the 2 neuroradiologists observed that the
CS-AI10-accelerated images improved the delineation of gray-
white matter boundaries and lesion areas with better image quality
than the other sequences. Therefore, when applying CS-AI tech-
nology to CE 3D-T1WI and CE 3D-FLAIR sequences on 3T MR
systems and considering improving the image quality and shorten-
ing the scan time, AF10 is recommended. CS-AI exhibited higher
CNR and better image quality at higher AFs, which may be attrib-
uted to its adaptive noise reduction capability. As the AF increases,
the model’s denoising effectiveness becomes more pronounced,
resulting in images with enhanced contrast and improved image
content, such as sharper gray-white matter connections and lesion

Table 1: Imaging parameters for CS- and CS-AI-accelerated CE 3D-T1WI sequences

Parameter
CE 3D-T1WI

CS6 (RS) CS 8/10/12 CS-AI 6/8/10/12
TR (ms) 600 600 600
TE (ms) 28 28 28
FOV (mm2) 250 � 250 250 � 250 250 � 250
Voxel size (mm3) 0.99 � 1.00 � 1.10 0.99 � 1.00 � 1.10 0.99 � 1.00 � 1.10
Slices 327 327 327
Acceleration factor 6 8/10/12 6/8/10/12
Scan time (min) 3:34 2:42/2:10/1:49 3:34/2:42/2:10/1:49
Scan time reduction - 24.29%/39.25%/49.06% �/24.29%/39.25%/

49.06%

Note:—dash indicates no value; RS, reference sequence; FOV, field of view; min, minute.

Table 2: Imaging parameters for CS- and CS-AI-accelerated CE 3D-FLAIR sequences

Parameter
CE 3D-FLAIR

CS6 (RS) CS 8/10/12 CS-AI 6/8/10/12
TR (ms) 4800 4800 4800
TE (ms) 340 340 340
FOV (mm2) 250 � 250 250 � 250 250 � 250
Voxel size (mm3) 1.12 � 1.12 � 1.12 1.12 � 1.12 � 1.12 1.12 � 1.12 � 1.12
Slices 326 326 326
Acceleration factor 6 8/10/12 6/8/10/12
Scan time (min) 4:48 3:41/2:53/2:24 4:48/3:41/2:53/2:24
Scan time reduction - 23.26%/39.93%/50.00% -/23.26%/39.93%/50.00%

Note:—dash indicates no value; RS, reference sequence; FOV, field of view; min, minute.
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boundaries. However, there is a limit to denoising. When the level
of undersampling is exceedingly high, even effective noise removal
cannot fully compensate for the loss of image quality. The images
tend to become blurred, and critical details are often lost, which

adversely affects the diagnostic quality of these images. These phe-
nomena are supported by our subjective scores.

CE-T1WI and CE-FLAIR sequences play essential roles in
detecting BM. Some studies have shown that CE-T1WI sequences

FIG 2. Quantitative analysis results of the SNR and CNR of CS- and CS-AI-accelerated CE 3D-T1WI under different AFs. Note: NS indicates not
significant; *, P, .05; **, P, .01; ***, P, .001; ****, P, .0001.

FIG 3. Quantitative analysis results of the SNR and CNR values of CS- and CS-AI-accelerated CE 3D-FLAIR images under different AFs. Note: NS
indicates not significant; *, P, .05; **, P, .01; ***, P, .001; ****, P, .0001.
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clearly show lesions in the brain paren-
chyma, whereas the CE-FLAIR sequence
is more likely to detect BM on the sur-
face of the cerebral cortex and lepto-
meningeal metastases and to help
distinguish small lesions from cerebral
vessels.24,25 In addition, 3D sequences
with higher spatial resolution are more
advantageous for detecting small meta-
static lesions when evaluating BM
because 3D sequences can performmul-
tiplanar reconstruction and reduce the
partial volume effect compared with 2D
sequences. However, the disadvantage
of a 3D scan is that a longer scan time is
required. Increasing scan times can be
challenging for some patients, leading to
possible image artifacts and even com-
plete scan failures. Furthermore, longer
acquisition times can increase the costs
of clinical examinations by reducing
patient throughput.26

Various MR imaging acceleration
techniques have been developed to
reduce image acquisition and recon-
struction times, among which parallel
imaging and compressed sensing are
the most influential. Both methods
improve the scanning speed by under-
sampling the k-space. However, the
larger the AF of parallel imaging, the

FIG 4. Comparison of the overall image quality score results of different accelerated sequences in patients with BM. Note: NS indicates not sig-
nificant; *, P, .05; **, P, .01; ***, P, .001; ****, P, .0001.

FIG 5. MR images of a 68-year-old woman with breast cancer and a 57-year-old man with lung
cancer. Reconstructed CE 3D-T1-weighted sagittal images for CS-AI6 (A1, A2), CS-AI8 (B1, B2), CS-
AI10 (C1, C2), CS-AI12 (D1, D2), reference CS6 (E1, E2), CS8 (F1, F2), CS10 (G1, G2), and CS12 (H1, H2).
The arrows indicate enhanced BM lesions. Notably, the gray-white matter boundaries and lesion
edges are clearer in the images accelerated by CS-AI technology, and the image quality is compa-
rable with or better than that of CS6.
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lower the SNR of the image and the easier it is to produce fold-
over artifacts. Though CS is superior to conventional SENSE-
type parallel imaging in maintaining SNR and is less prone to
generating artifacts, the image quality often degrades due to
insufficient noise removal when the AF is higher than a certain
level.27 In this study, the CS group exhibited lower overall image
quality scores for CS12-accelerated CE 3D-T1WI and CE 3D-
FLAIR sequences compared with other AFs. Addressing these
problems by applying a deep learning framework in the original
data reconstruction is expected to reduce the scanning time while
preserving image quality.

Deep learning is a popular machine learning approach that
can automatically extract features and process high-dimensional
medical image data.28 Currently, this is the most widely used AI
approach for medical images. One of its primary applications in
medical imaging is accelerated MR imaging.29,30 Recently,
researchers have applied this method to sequence optimization.
For instance, Park et al31 demonstrated that fast MR imaging
based on deep learning can be used to reduce the acquisition time
of prostate MR imaging without compromising diagnostic per-
formance. Zhao et al32 used AI-assisted CS technology to acceler-
ate T2-weighted kidney imaging, which obviously shortened the
scanning time, and the image quality was equal to or better than
that of traditional technology. Sheng et al33 used a convolutional
neural network framework to improve the reconstruction speed
and image quality of single breath-hold T2-weighted sequences

in liver scanning. This implies that image
reconstruction functions in AI can fur-
ther enhance the clinical applicability of
time-consuming imaging sequences.

To our knowledge, this is the first
study to comprehensively evaluate CS-
AI for the imaging of patients with BM.
Vranic et al7 used CS to accelerate 3D
sequence scanning in patients with
brain tumors. However, that study uti-
lized only 1 specific AF. While the
findings underscore the superiority of
CS over traditional scanning methods,
the research did not determine the
optimal AF, indicating a need for fur-
ther exploration in this area. Zhang et
al34 evaluated the feasibility of CS with
different AFs for the imaging of
patients with brain tumors, but this
was done only for 3D amide proton
transfer-weighted sequences, and they
concluded by recommending CS4. In
this study, we obtained corresponding
images for objective and subjective
evaluations by applying CS and CS-AI
to patients with BM and explored the
optimal AF for clinical BM imaging.
Notably, in this study, though the SNR
and CNR of CS12 were better than or
roughly similar to those of CS6, the
image quality obtained after the recon-

struction of the 2 sequences was inferior to that of CS6 (Fig 5
H1, H2; and Fig 6 H1, H2). This indicated that the quantitative
parameters did not fully represent the overall image quality in
terms of iterative image reconstruction and denoising. Objective
and subjective evaluations must be combined to comprehen-
sively analyze image diagnostic performance.

This study has some limitations. First, this was a single-center
prospective study with a small sample size that exclusively used
single vendor equipment. Due to the incompatibility of CS-AI
with other manufacturers’ devices, its applicability is restricted to
Philips MR imaging systems. In addition, the study did not
explore the use of this technology with various MR imaging coils
or lower field strength systems, nor did it explore its generaliz-
ability to similar equipment in different hospital settings.
Therefore, future research should consider these aspects to fur-
ther enhance the understanding and application of CS-AI in vari-
ous MR imaging contexts. Second, BM were mainly confirmed
during follow-ups. Patients with multiple BM frequently do not
undergo surgery, so lesions are rarely pathologically confirmed.
Third, CS- or CS-AI-accelerated scans with different AFs were
performed in a random acquisition order to reduce time bias.
This may have influenced the enhancement of the lesions to
some extent; however, the 2 raters considered no significant dif-
ference in enhancement between the observed images. Finally, 42
of the 51 patients included in this study had lung cancer.
Theoretically, these findings can only be applied to BM due to

FIG 6. MR images of a 55-year-old male patient and a 38-year-old male patient with lung cancer.
Reconstructed CE 3D-FLAIR sagittal images for CS-AI6 (A1, A2), CS-AI8 (B1, B2), CS-AI10 (C1, C2), CS-
AI12 (D1, D2), reference CS6 (E1, E2), CS8 (F1, F2), CS10 (G1, G2), and CS12 (H1, H2). The arrows indicate
enhanced BM. In the CS group, as the AF increases, the images become blurred, and the junctions
of gray-white matter and the boundaries of the lesions become less clear.
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lung cancer. Therefore, more heterogeneous populations are
needed to confirm these results in patients with other metastatic
tumors.

CONCLUSIONS
Combining CS and deep learning can shorten scanning time
while maintaining or improving image quality compared with
conventional CS. Using CS-AI with AFs up to 10 to reconstruct
CE 3D-T1WI and CE 3D-FLAIR sequences on a 3T MRmachine
could reduce scanning time and improve diagnostic performance.
When CS-AI10 (Fig 7) was used for acceleration, CE 3D-T1WI
and CE 3D-FLAIR sequences were 39.25% (2:10minutes versus
3:34minutes) and 39.93% (2:53minutes versus 4:48minutes)
faster than CS6, respectively. The use of CS-AI technology could
optimize CE 3D scans when performing clinical imaging of
patients with BM to help radiologists better evaluate lesions in
detail while improving scanning efficiency.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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