CT of Primary and Secondary Craniocerebral Neuroblastoma

Robert A. Zimmerman and Larissa T. Bilaniuk


http://www.ajnr.org/content/1/5/431

This information is current as of October 21, 2023.
CT of Primary and Secondary Craniocerebral Neuroblastoma

Eleven children with craniocerebral neuroblastoma (three primary and eight metastatic) were examined by computed tomography (CT). The findings in both primary and secondary neuroblastoma correlate well with the known neuropathologic findings. Primary cerebral neuroblastoma originates in the brain parenchyma of the supratentorial space, and may extend into the cerebrospinal fluid pathways. Secondary neuroblastoma is confined to the osseous structures of the calvarium and orbit, and adjacent subperiosteal spaces (epidural and epicranial). In both forms of neuroblastoma, intratumoral hemorrhage is frequent. Separation of the cranial sutures often relates to epidural deposits of tumor extending to the sutural margins. In this form of sutural diastasis, intracranial pressure is not elevated. When elevated intracranial pressure accompanies sutural diastasis, CT findings reveal epidural deposits compressing the major dural venous sinuses in the region of their confluence.

Neuroblastoma may arise as a primary intracerebral neoplasm [1] or may metastasize to the skull, epidural space, and orbit. There is a difference between the primary and secondary craniocerebral forms in their clinical presentation and in their computed tomographic (CT) appearance. Computed tomography is superior to other radiologic studies in the diagnosis of both the primary and secondary forms of craniocerebral neuroblastoma because it demonstrates with a very low morbidity the full tumor extent and specific characteristics of the tumor. A relatively frequent finding is intratumoral hemorrhage.

Subjects and Methods

During a 5 year period (1974–1979), 11 patients with craniocerebral neuroblastoma have been examined by CT at the Hospital of the University of Pennsylvania. Three patients, all male, had no evidence of extracerebral neuroblastoma either at autopsy (one case), or during the course of followup (two cases, 3–5 years after CT diagnosis), and are therefore thought to have primary intracerebral neuroblastoma. Eight patients (three male and five female) had secondary craniocerebral neuroblastoma.

Computed tomographic scans were done on either an EMI, Mark One head scanner (160 × 160 matrix), an EMI 1005 head scanner (160 × 160 matrix), or an EMI 5005 body scanner (160 × 160 or 320 × 320 matrix). Slice thickness was 13, 8, or 6 mm. Coronal scans were performed on the body scanner. Iodinated radiographic contrast medium (Conray 60) was administered as an intravenous bolus in a dose of 1 ml/lb up to a maximum of 100 cc.

Observations

The three patients with primary intracerebral neuroblastoma were 2, 4, and 8 years old at the time of diagnosis. Two of the three primary tumors presented as
Deposits, occasionally subdural, but only rarely produce epidural metastases involving the calvarium, orbit, or skull base [2].

Discussion

Primary cerebral neuroblastoma arises anywhere within the cerebral hemispheres [1], while secondary craniocerebral neuroblastoma is manifested most often as osseous metastases involving the calvarium, orbit, or skull base [2]. Metastatic calvarial lesions may extend to produce epidural deposits, occasionally subdural, but only rarely produce subarachnoid spread [3]. In contradistinction, primary central nervous system neuroblastoma arises intraparenchymally and frequently invades leptomeninges and seeds the subarachnoid space [5]. Cerebral parenchymal metastases are extremely rare, but can occur by retrograde seeding of the cerebrospinal fluid pathways. When this occurs, it usually follows intraspinal extension of a retroperitoneal primary tumor [4].

Histologically, both primary and secondary forms of cerebral neuroblastoma are similar [5]. They are highly cellular tumors with numerous mitotic figures, scant cytoplasm, and poor differentiation [3]. Grossly, they appear lobulated and well defined, but show frequent cystic degeneration, blood staining of cysts, and occasionally extensive hemorrhages [3]. In this series, two of the three patients with primary cerebral neuroblastoma had catastrophic symptoms due to a hemispheric mass. Computed tomography showed massive intratumoral hemorrhage (fig. 1) in one patient, and in the other both hemorrhage and nonhemorrhagic tumor (fig. 5). One of the patients with known secondary craniocerebral neuroblastoma had similar symptoms, and on CT examination was found to have a large hemorrhagic tumor mass that extended from the calvarium through the dura into the cerebral parenchyma (fig. 2).

Metastatic involvement of the bony orbit and skull has been found in up to 25% of cases [6], and is one of the most frequent clinical forms, a presentation that often precedes direct evidence of the primary tumor. In three patients of this series, periorbital soft-tissue hematomas (black eyes) were the initial manifestation of the secondary craniocerebral neuroblastoma. These hematomas arise from hemorrhage into osseous or soft-tissue metastases in the orbital region. In two of these patients CT demonstrated metastatic involvement of the sphenoid bone (fig. 3A) with contiguous subperiosteal intra- and extraorbital tumor masses (figs. 3A and 3B).

Metastatic involvement of the skull and orbit produces...
Fig. 3.—Secondary craniocerebral neuroblastoma. A, Postcontrast. Bilateral subperiosteal masses intraorbitally (arrowheads) arise from metastasis in the sphenoidal walls of the orbit. Tumor also extends subperiosteally into both temporal fossae (arrows) and both middle cranial fossae (open arrows). Marked bilateral proptosis. B, Coronal section through orbit. Inferosuperior extent of lateral subperiosteal tumor masses (arrowheads). C, Epidural tumor deposits outline margins of sagittal suture (arrowheads).

Fig. 4.—Secondary craniocerebral neuroblastoma with dural metastasis and venous thrombosis. A, CT scan without contrast material injection. Calcified mass (arrow) projects into cisterna magna from dura of calvarium. This represents the spiculated hair-on-end hyperostosis that can be seen on skull radiographs. B, Postcontrast at same level as A. Enhancement of tissue containing calcification (arrow). C, Postcontrast at level above A and B. Confluence of lateral sinuses is displaced forward (arrowheads) by partially enhancing tumor mass (arrow). D, Next level higher. Lucent filling defect (arrow) at juncture of straight and lateral sinuses. At autopsy, this was thrombus within sinus confluence.

several possible radiographic findings; thickened bone, the so-called "hair-on-end" periosteal reaction (spiculated bone), lytic defects, and separation of the sutures. Skull radiographs were normal in all three cases of primary cerebral neuroblastoma. In the eight cases of secondary craniocerebral neuroblastoma, the skull radiographs demonstrated hyperostosis of the sphenoid bone due to tumor in two cases, splitting of the cranial sutures in four cases, and destructive calvarial lesions in one case.

Computed tomographic findings reflect the known pathologic processes involved in neuroblastoma metastases to the skull and orbit. The "hair-on-end" appearance is a periosteal response to tumor cells extending from the calvarial metastasis (figs. 4A and 4B). The inner aspect of the periosteum is particularly resistant to penetration by tumor cells so that the tumor, as it breaks out of the bone, lifts the periosteum producing plaque-like epidural deposits of tumor (figs. 3C, 4C, and 4D). Secure anchoring of the dura at the suture margins limits the tumor to the adjacent sutural edges. Resulting pressure from tumor deposits adjacent to the sutures results in sutural diastasis. Intracranial hypertension is not usually associated with this form of sutural separation [7,8]. The computed tomographic counterpart of this form of sutural diastasis is an extensive epidural deposit of tumor on either side of the sutural margins (fig. 3C).

In the presence of clinically evident intracranial hypertension, one should look for venous sinus compression or occlusion by epidural tumor deposits. Carter et al. [2] stated that this finding is rare. However, two of the eight patients with secondary craniocerebral neuroblastoma in this series...
A gender predilection has not been reported in either the form and more than with primary craniocerebral neuroblastoma there has been no evidence of extracerebral disease (autopsy, one; series, follow-up, metastasis adjacent to the bridge of the nose. Cranio cerebral neuroblastoma. Computed tomography, other sites of metastatic involvement in these patients were active in one patient whose skull the time of the computed tomographic examination. The presentation of the neuroblastoma was due to the cranio cerebral involvement. Secondary cranio cerebral neuro­ blastoma, the cranial metastasis of neuroblastomas. Computed tomography is the most useful single diagnostic method to demonstrate the pathophysiologic consequences of secondary cranio cerebral neuroblastoma. Hyperostotic sphenoidal metastases, orbital and intracranial subperiosteal epidural tumor deposits, and tumor deposits displacing and compressing adjacent venous sinuses are all well shown on computed tomographic studies. CT also demonstrates the presence of intratumoral hemorrhage in both the primary and secondary forms of cranio cerebral neuroblastoma.

By using the computed tomographic information, the primary and secondary forms of cranio cerebral neuroblastoma can be differentiated. The primary form is limited to the brain parenchyma and subarachnoid space, and is often hemorrhagic. The secondary form is associated with osseous and epidural tumor deposits and shows a predilection for certain sites that is almost pathognomonic. Primary cerebral neuro­ blastoma presenting without hemorrhage may resemble other malignant hemispheric tumors in the young child.

REFERENCES