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Angiogenesis and Blood-Brain 
Barrier Breakdown Modulate CT 
Contrast Enhancement: 
An Experimental Study in a 
Rabbit Brain-Tumor Model 

529 

Because of the crucial role played by tumor neovascularization in contrast enhance­
ment, we studied the CT imaging findings in a transplantable rabbit brain tumor, the VX2 
carcinoma that induces angiogenesis and the breakdown of blood-brain barrier associ­
ated with contrast enhancement. Tumor detection by contrast enhancement followed 
the peak of angiogenesis. Inhibition of angiogenesis, by copper depletion and penicil­
lamine, led to avascular tumors that lack contrast enhancement. Furthermore, there was 
no contrast enhancement in brain adjacent to the tumor of normocupremic rabbits or 
within the hypocupremic tumor, despite the breakdown of the blood-brain barrier, without 
the concomitant presence of angiogenesis. 

We conclude that contrast enhancement of intracranial tumors is dependent primarily 
on the proliferation of the microvasculature. 

Contrast enhancement is one of the main radiologic manifestations of CNS 
tumors; it is not observed, however, in all tumors [1 ). The mechanisms that cause 
the contrast enhancement of brain tumors are not entirely known but remain 
important to the interpretation of CT scans. These mechanisms relate to breakdown 
of the blood-brain barrier (BBB) [2-5] and to tumor neovascularization , that is , 
angiogenesis [6-12) . The growth of tumors outside the CNS [13) and in the brain 
[14, 15] proceeds through two stages: the early avascular and the later vascular 
phases. Prevention of angiogenesis arrests tumor growth at the avascular stage 
[16). Tumor neovascularization is prevented in the cornea [17 , 18) and in the brain 
[19] by the depletion of copper, a necessary cofactor for angiogenesis [17, 20) . 

The present study was designed to investigate the mechanisms that modulate 
contrast enhancement. We selected the rabbit VX2 carcinoma, useful for radiologic 
research [21-23) , studies of BBB, and angiogenesis [24) . We compared the serial 
CT images, extravasation of Evans blue, and histology of normocupremic and 
hypocupremic tumors. 

Materials and Methods 

We implanted 5 x 1 05 cells of the VX2 carcinoma into the right parietal lobe of 36 3-kg 
male New Zealand white rabbits, according to a model of intracerebral angiogenesis and 
tumor growth [24]. 

We divided the rabbits into six groups of six animals each: four for CT imaging and two 
for study of the BBB. Tumor size and histology were determined in each of the six animals. 
Groups 1-5 were fed a normal diet• throughout the experiment. Group 6 animals were fed a 
low-copper diet,t beginning 6 weeks before tumor implantation, and given 20 mg of o­
penicillaminet per os , thrice daily , 6 days before and after tumor-cell implantation [17] . 

CT studies were performed on an Elscint Exel 2002, with the following settings: circle 
diameter, 140 mm; X-ray current , 40 mA; voltage, 140 kV; scan time , 10.5 sec; slice width, 
3 mm; and image matrix , 340 x 340. The brains of the rabbits were imaged in the coronal 
and axial planes before and 5 min after completion of IV administration of 3 mljkg of 
iothalamate meglumine§ given as a bolus. 

---------------------------------------
• # 5301, Ralston Purina Canada Inc., Longueuil , Quebec. 
1 # 5890C-1, Ralston Purina, Richmond , IN. 
1 # 4875, Sigma Chemical Co., St. Louis, MO. 
§ Conray 60, Mallinckrodt Laboratories, Pointe-Claire, Quebec, Canada. 
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Group 1 was scanned 6 days after implantation, and immediately 
sacrificed. Groups 2-5 were likewise studied and sacrificed on days 
10, 14, 18, and 22, respectively. In group 6, aCT scan was obtained 
only when the animals developed neurologic deterioration (gait dis­
turbances , decreased level of consciousness). The brains were re­
moved and fixed in 1 0% phosphate-buffered formalin for 6 days. The 
specimens were sectioned coronally at 1 .5-mm intervals and corre­
lated to the CT coronal scans. 

One hour before sacrifice, two rabbits in each group received 2% 
Evans blue (2 ml/kg) injected IV via the marginal vein of the ear. The 
brains were then removed and evaluated for Evans blue extravasation 
by using a semiquantitative scale [25] . 

After fixation and coronal sections, tumor volume was determined 
by measuring coronal (d1 ), axial (d2), and transverse (d3) diameters 
using the formula (d1 x d2 x d3 x -rr)/6 [26]. The specimens were 
then examined histologically. Tumor neovascularization was scored 
by using a histologic method that computes microvascular density, 
endothelial hyperplasia, and endothelial cytology [27]. Vascular den­
sity was defined in our study as the number of microvessels per field 
(x 200). 

Blood samples were taken in all the animals at the beginning of 
the experiment, at time of surgery, and at time of sacrifice for serum 
copper determinations [28]. 

Statistical analysis of tumor volume was performed by analysis of 
variance and Tukey test (29]. A p < .05 was the chosen level for 
significance. 

Results 

Serum copper levels are shown in Table 1. Groups 1-5 
were normocupremic throughout the experiment, whereas 
group 6 was hypocupremic at the time of tumor-cell implan­
tation and sacrifice. The mean survival time in group 6 was 
19 ± 1.8 days. 

CT Findings 

In the normocupremic animals, there was no tumor detec­
tion at any time without contrast infusion. Even with contrast 
infusion, there was still no visualization of the tumor on days 
6 and 10. Starting at day 14, the tumor first showed dense, 
round , homogeneous, well-defined enhancement (Fig. 1 A) . As 
the tumor enlarged, it became more oval on day 18 (Fig. 2A). 

TABLE 1: Serum Copper Levels in Rabbits Implanted 
with Tumor 

Copper Level (J.Lg/dl) 

Group Day of No. of Day of 
No. Sacrifice Rabbits Start Tumor 

Day of 

Implantation 
Sacrifice 

1 6 6 73.3 ± 10.3 62.4 ± 9.9 62.1 ± 9.4 
2 10 6 70.0 ± 10.2 61.1 ± 9.5 60.6 ± 8.9 
3 14 6 57.0 ± 10.6 62.9 ± 8.2 59.2 ± 9.8 
4 18 6 62.2 ± 11 .5 64.6 ± 3.9 63.8 ± 15.2 
5 22 5" 61 .8 ± 8.8 61 .3 ± 4.2 63.7 ± 9.3 
6 19 ± 1.8 6 69.5 ± 12.8 11.9 ± 3.6 7.4 ± 4.4 

Note.-Groups 1- 5 were fed a normal diet ; group 6 was fed a low-copper 
diet. 

• Six th animal excluded because of death before scheduled CT. 

Finally, on day 22, patchy areas of decreased attenuation 
appeared within the center of the tumor (Fig. 3A). The lesion 
itself remained very well defined at all times. CT was not 
performed in one animal in group 5 because it died before 
day 22. The tumor was visualized with CT in all the other 
normocupremic rabbits studied on days 14, 18, and 22. 

CT in the hypocupremic animals appeared normal even 
after injection of contrast material (Fig. 4A). In both norma­
and hypocupremic groups we failed to observe peritumoral 
edema. 

Histologic Findings 

In normocupremic tumors, a slight capillary proliferation 
first appeared on day 6. The vascular density increased 
progressively until day 14, when neovascularization was 
prominent (Fig. 1 B). On day 18, tumor vascularity was slightly 
decreased (Fig. 2B). By day 22 , vascularized tumors accom­
panied by central necrosis were present in all normocupremic 
rabbits (Fig . 3B). The cortical surface revealed many enlarged 
tortuous peritumoral vessels resembling those of human ma­
lignant tumors [30]. The progression of volume and vascular 
density in the normocupremic tumor is summarized in Table 
2 and Figure 5. 

The tumors in the hypocupremic groups were tiny , pale, 
laminar plaques with 91 % less volume compared with the 
normocupremic tumors on day 22 (Table 2). The cortical 
surface of hypocupremic rabbits showed a normal vascular 
pattern . Microscopically, the tumor cells retained malignant 
features and appeared viable, but the capillary density was 
close to that of a normal brain, indicating that angiogenesis 
failed to occur (Fig. 4B). 

Evans Blue Studies 

In normocupremic animals (groups 1-5) Evans blue extrav­
asation appeared in the tumor area by day 6 and around the 
tumor by day 14. Extravasation was not seen on the cortical 
surface on day 14 (Fig. 1 C). By day 18 extravasation was 
prominent in the tumor and brain adjacent to tumor and was 
detected on the cortical surface (Fig. 2C). Finally, by day 22, 
we observed severe extravasation in the tumor and at the 
level of the cortical surface (Fig. 3C). The hypocupremic 
animals in group 6 revealed marked extravasation in and 
around the tumor (Fig. 4C). 

In summary (Table 2), in normocupremic rabbits, contrast 
enhancement allowing tumor detection was possible only 
when angiogenesis was prominent by day 14. In the hypo­
cupremic rabbits, even though the tumor volume at the time 
of sacrifice was larger (46.8 ± 26.6 mm3

) than the tumor 
volume on day 14 (13.2 ± 2.2 mm3

) in normocupremic rabbits, 
no tumor was visualized on CT, even after contrast injection. 
Evans blue extravasation was observed in normocupremic 
tumors at all stages and around them on day 14; in hypocu­
premic tumors Evans blue extravasation was noted in and 
around the tumor. 
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A B 
Fig. 1.-Normocupremic tumor on day 14. 
A, Axial CT scan shows enhancing tumor nodule of right high convexity. 
8, Highly vascularized tumor. (H and E, x200) 
C, Cortical surface fails to reveal Evans blue extravasation on day 14. 

A B 
Fig. 2.-Normocupremic tumor on day 18. 
A, Axial CT scan shows large homogeneously enhancing tumor on right. 
8 , Slight decrease of tumor vascular density. (H and E, x250) 
C, Cortical surface reveals localized area of Evans blue extravasation. 

c 

c 

531 
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A 8 c 
Fig. 3.-Normocupremic tumor on day 22. 
A, Axial CT scan reveals further enlargement of tumor, but now with some inhomogeneity and areas of decreased attenuation corresponding to tumor 

necrosis. 
8 , Prominent vascular proliferation at tumor periphery around central necrosis (N). (Hand E, x 150) 
C, Severe Evans blue extravasation seen on cortical surface on day 22. 

8 c 
Fig. 4.-Hypocupremic tumor. 
A, Axial CT scan. No contrast enhancement is detected. 
8, Light microscopy reveals lack of vascular proliferation in tumor; angiogenesis is suppressed. (H and E, x450) 
C, Broad areas of Evans blue extravasation are observed on cortical surface around tumor. 

In normocupremic animals, on day 18, we observed necro­
sis and punctate hemorrhages with light microscopy, but not 
by CT scanning. Necrosis was observed on CT on day 22 
when it was more prominent by histopathology. 

Discussion 

Currently , two interrelated mechanisms are invoked to ex­
plain the contrast enhancement of tumors on CT: (1) break­
down of the BBB with passage of iodine across the basement 

membrane of the capillaries into the tumor (2-5] and (2) tumor 
neovascularization leading to increased intravascular levels of 
iodine [6-12], that is, "computed angiotomography" (8], with 
a positive correlation between contrast enhancement and the 
degree of vascularity [7]. Because of the newly discovered 
ability to pharmacologically suppress capillary growth induced 
by brain tumors (18, 19], we could test the relative contribu­
tions of BBB breakdown and angiogenesis. 

The exact mechanism by which copper regulates angiogen­
esis is unknown (31 ] , but the following observations link 
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TABLE 2: Tumor Vascularity, Size, Breakdown of the Blood-Brain Barrier (BBB), and Contrast Enhancement in Rabbits Implanted 
with Tumor 

Day of CT Breakdown of Contrast 

Group and 
No. of Tumor Tumor Size BBBb Enhancement 

Sacrifice Rabbits Vascularity• (mm3
) 

Tumor BAT Tumor BAT 

Normocupremic 
1 6 6 5.2 ± 1.0 0 .2 ± 0.04 + 0 No No 
2 10 6 8.7 ± 1.5 0.7 ± 0.2 + 0 No No 
3 14 6 16.5 ± 1.6 13.2 ± 2.2 ++ + Yes No 
4 18 6 13.7 ± 1.4 70 .0 ± 17 .5 ++ ++ Yes No 
5 22 5c 12.4 ± 1.5 513.5 ± 128.0 +++ ++ Yes No 

Hypocupremic 
6 19.5 ± 1.8 6 4.2 ± 0.8 46.8" ± 26.6 +++ ++ No No 

Note.-AII data expressed represent mean± SD. BAT= brain adjacent to tumor. 
• Number of microvessels per field. (x 200) 
"Breakdown of BBB detected by extravasation of Evans blue: 0 = none; + = slight; ++ = moderate; +++ = severe . 
c Sixth animal excluded from the study because of death caused by tumor growth before scheduled day of CT. 
d Statistically significant difference from normocupremic tumors on day 22 (p < .01 ). 
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Fig. 5.-Progression of vascular density in normocupremic animals. CT 
tumor visualization correlates with peak tumoral angiogenesis. HPF = high­
power field. 

copper as a cofactor for angiogenesis: (1) copper ion, but not 
other metal salts, stimulates endothelial cell locomotion in 
vitro [32]; (2) a local rise of copper concentration precedes 
neovascularization in the cornea [17]; (3) copper salts act in 
a dose-dependent fashion as a chemoattractant to induce 
corneal neovascularization in vivo [33] ; and (4) ceruloplasmin 
and heparin are angiogenic in the cornea only when bound to 
copper [20]. Penicillamine, a chelator of copper, contributes 
to copper depletion by acceleration of copper clearance [17]. 

Contrast enhancement appeared on day 14 in normocu­
premic tumors and failed to appear in larger hypocupremic 
tumors (Table 2), excluding size alone as a determinant of 
contrast enhancement. In the hypocupremic group, the Evans 
blue extravasation revealed the breakdown of the BBB, both 
within the tumor and in the peritumoral area. CT scans of 
hypocupremic animals , however, failed to reveal enhance­
ment after iothalamate meglumine injection. In hypocupremic 
tumors, angiogenic inhibition likely prevented contrast en-

TABLE 3: Angiogenesis and Breakdown of the Blood-Brain 
Barrier as Causes of Contrast Enhancement in Tumor­
Implanted Rabbits 

Breakdown 

Group Angiogenesis 
of Blood- Contrast 

Brain Enhancement 
Barrier" 

Normocupremic 
Tumor + + + 
Brain adjacent to tumor + 

Hypocupremic 
Tumor + 
Brain adjacent to tumor + 

' Detected by Evans blue extravasation . 

hancement. On the other hand, contrast enhancement ap­
peared in normocupremic malignant tumors that contain nu­
merous new blood vessels . 

The permeability of newly formed capillary sprouts com­
pared with that of mature capillaries is increased [34] . Normal 
capillaries of the brain maintain the integrity of the BBB [35], 
but the blood vessels of experimental [36] and human [37] 
brain tumors are structurally altered and have an increased 
capillary permeability.ln normocupremic rabbits, the presence 
of both tumor angiogenesis and breakdown of the BBB is 
linked to the appearance of contrast enhancement. In hypo­
cupremic rabbits, however, the breakdown of the BBB is not 
sufficient by itself to result in contrast enhancement. 

Evans blue binds to albumin and has a molecular weight of 
68,500 daltons [38], whereas iothalamate meglumine has a 
molecular weight of 800 daltons. Comparison of molecular 
weights does not explain the leakage of Evans blue and the 
failure of contrast material to cross an open BBB. To explain 
the paradox between the appearance of Evans blue extrav­
asation and the absence of contrast enhancement, we sug­
gest that the interval after injection of iothalamate, 5 min, 
compared with the longer interval after injection of Evans 
blue, 1 hr, accounts for the appearance of Evans blue extrav­
asation , despite the greater molecular weight of Evans blue. 
It is plausible that if the CT scans were obtained 1 hr after 
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the injection of iothalamate, the hypocupremic tumors might 
have shown contrast enhancement. Our data support the 
concept that if a CT scan is obtained immediately after 
injection, the contrast enhancement probably correlates with 
vascularity [7]. 

There was a correlation between the histologic boundary 
of the tumors and contrast enhancement in the normocu­
premic group. On day 22, at the periphery of the tumor, both 
vascularity [24) and contrast enhancement were prominent. 
The topographic distribution corresponds to the growth pat­
terns of malignant human gliomas, where contrast enhance­
ment and vascular proliferation are both conspicuous at the 
growing edge [1 0-12, 39]. The zone of Evans blue extrava­
sation, however, did not correlate with histologic evidence of 
angiogenesis nor with the radiologic appearance of CT con­
trast enhancement. 

We conclude from our data (Tables 2 and 3) that breakdown 
of the BBB was a necessary but not sufficient condition for 
contrast enhancement and that angiogenesis in our brain­
tumor model was a key requirement for the appearance of 
contrast enhancement. 

Angiogenesis occurs at the microvascular level. For cl inical 
imaging, contrast enhancement in CT scanning is a sensitive 
guide to vascular proliferation and differs from angiography, 
which delineates the macrovessels or their branches. 
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