Lumbar disk herniation and canal stenosis: value of intraoperative sonography in diagnosis and surgical management.

B M Montalvo, R M Quencer, M D Brown, E Sklar, M J Post, F Eismont and B A Green

AJNR Am J Neuroradiol 1990, 11 (1) 31-40

http://www.ajnr.org/content/11/1/31
Lumbar Disk Herniation and Canal Stenosis: Value of Intraoperative Sonography in Diagnosis and Surgical Management

Berta M. Montalvo¹
Robert M. Quencer¹
Mark D. Brown²
Evelyn Sklar¹
M. Judith D. Post¹
Frank Eismont²
Barth A. Green³

One hundred four patients with preoperative diagnoses of lumbar canal stenosis, disk herniation, or a combination of both were evaluated with intraoperative sonography with the intent of (1) describing the sonographic characteristics of herniated disks and distinguishing these from bulging anuli, epidural fat, scar tissue, and spondylolisthesis; (2) establishing criteria for adequate decompression of canal stenosis; and (3) determining the usefulness of sonography in monitoring disk removal. Disk material demonstrates medium echogenicity, different in its sonographic features from bone, epidural fat, scar tissue, and epidural veins. A sonographic diagnosis of disk herniation was made in 43 cases, 41 of which were confirmed during surgery. Sonography established the presence or absence of disk herniation (confirmed by surgery) in 14 of 19 patients who had equivocal preoperative findings. After routine diskectomy, residual disk material was found in 17 (41%) of 41 patients, which led to further surgery in 16 patients with removal of the additional disk fragments. In 84 patients undergoing decompressive surgery for canal stenosis, sonography detected residual canal compression in 19 (23%), which led to a widened decompression in 15 of these patients. Sonography can differentiate disk material from other normal or abnormal structures in the canal; therefore, sonographic monitoring helps to ensure adequate bony decompression and complete diskectomy.

We conclude that intraoperative sonography is an important tool in the surgical management of lumbar disk disease and stenosis.

In laminectomies performed for suspected disk herniation and/or degenerative spondylosis/canal stenosis of the lumbar spine, proper patient selection, accurate preoperative diagnoses, and good surgical technique are important factors in decreasing the number of “failed backs.” Intraoperative spinal sonography is an imaging technique that has been reported to be useful in the surgical biopsy or removal of soft-tissue masses [1], the shunting of congenital [2] and posttraumatic [3, 4] cysts of the cord and subarachnoid space, and the placement of Harrington rods in previously injured spines [4–6]. An early article reported the sonographic findings in six patients who had disk herniation and spondylolisthesis and concluded that sonography might be useful in these lesions [7]. At our institution over the past 4 years, we have used intraoperative spinal sonography in a large number of patients who had undergone surgery for abnormalities related to degenerative disk disease and spondylolisthesis of the lumbar spine. It was our intention to determine the role sonography could play in the intraoperative evaluation of the spine in these conditions and to see how this information could assist in surgical management. In this report, we describe our experience with this technique; illustrate the sonographic findings; and establish sonographic criteria for the diagnosis of disk herniation, complete diskectomy, and adequate decompression in canal stenosis.

Materials and Methods

One hundred four patients with the preoperative diagnosis of spondylolisthesis, canal stenosis, and/or herniated disk of the lumbar spine were examined with intraoperative spinal sonog-
raphy over a 4-year period. The preoperative diagnoses were made with one or more of the following techniques: myelography, non-contrast-enhanced CT, CT myelography, or MR imaging. The preoperative diagnoses were disk herniation alone (20), spondylosis alone with focal or generalized canal stenosis at one or multiple levels (42), and a combination of disk herniation and spondylosis (42). In 29 of these 104 cases, the patients had undergone prior surgery at the same level or levels. Both single- and multilevel disease were evaluated. Only patients with technically adequate examinations are reported here. Seven other patients who had sonograms are not reported in this study. In three there was insufficient clinical, operative, and sonographic information; in four the sonograms were inadequate.

The patients examined by intraoperative sonography were not consecutive. We had planned to make this a consecutive study including all patients with spondylosis and/or herniated disk undergoing laminectomy, but a number of patients in the time period of the study were not examined with intraoperative spinal sonography. No patients undergoing a "microlaminectomy" were examined, since the field of view in such an exposure is inadequate for our probe. In a small group of patients, the decision to request intraoperative sonography was made late and the delay involved in transporting the ultrasound unit to the operating room would have added too much time to the surgical procedure, so these patients were not studied.

In those patients operated on for herniated disk alone, the surgical procedure consisted of bilateral laminectomy or a hemilaminectomy with a 1.5-cm opening. If there was associated canal stenosis or if only degenerative or congenital canal stenosis was present, a posterolateral decompression consisting of laminectomy and medial facetectomy was performed. Such operations allowed an adequate window for sonography.

Intraoperative spinal sonography was performed with a 7.5-MHz transducer encased in a sterile sheath. After laminectomy or posterolateral decompression, the wound was filled with sterile solution such as Ringer lactate or normal saline and a baseline sonogram was performed.

Fig. 1.—Herniated disk and canal stenosis.

A, Unenhanced CT scan at L4-L5 level shows central disk (arrows) with associated canal stenosis. Note well-defined interface between disk and sac. Echogenic material (b) overlying dura (long arrows) represents fresh blood.

B, Axial sonogram after bilateral laminectomy and medial facetectomies shows soft-tissue mass (short arrows) of medium echogenicity flattening ventral sac and compressing lumbar roots (compare with A). Interspace is bounded by inferior edge of L4 (short white arrow) and superior edge of L5 (black arrow) vertebral body. Disk protrudes into canal and narrows anteroposterior diameter of sac. Disk is of heterogeneous medium echogenicity; brighter echoes represent specular reflections.

C, Longitudinal sonogram. Disk has appearance of soft-tissue mass (long white arrow) at level of interspace. Interspace is bounded by inferior edge of L4 (short white arrow) and superior edge of L5 (black arrow) vertebral body. Disk protrudes into canal and narrows anteroposterior diameter of sac. Disk is of heterogeneous medium echogenicity; brighter echoes represent specular reflections.

D, After what the surgeon believed was a complete diskectomy the sac regained a more rounded shape, but residual disk (arrows) compressing sac remains in left lateral aspect of canal (compare with B).

E, Final sonogram after removal of disk fragment shown in D shows symmetric rounded shape to thecal sac, no compression of lumbar roots, and no residual disk material.
obtained with images in the axial and longitudinal planes. The sono-
graphic appearance of herniated disk(s), epidural soft tissue, residual
scarring from prior procedures, swollen nerve roots, subluxation,
or arachnoiditis were noted and correlated with the radiographic
and surgical findings. Observations were also made of the sonographic
appearance of normal structures of the spinal canal including disk
material, epidural fat, epidural veins, nerve roots, CSF, and bony
contours of the surrounding spine. In patients with canal stenosis,
the configuration of the canal and the thecal sac was studied and
compared with the radiographic findings.

After the baseline sonogram, further surgery was performed as
warranted. For example, in instances of herniated disk, diskec­
tomy was undertaken, and in cases of canal stenosis, bone was removed
to decompress neural structures. The adequacy of these surgical
procedures was monitored sonographically and was assessed by the
amount of disk or bone removed and the subsequent increased
space in the spinal canal and the amount of CSF surrounding neural
tissue as compared with the appearance on the initial sonogram. As
the surgery progressed, the results of the sonograms were compared
with the operative findings, and continued surgery was undertaken
as deemed necessary from these sonographic images and the pa­
tient’s clinical presentation.

The number of cases in which sonography added diagnostic infor­
mation and the impact of intraoperative sonography on surgical
management as evidenced by further diskec­tomy or bony de­
compression were recorded. The criteria used to judge the adequacy
of diskec­tomy or canal decompression are described in the Results
section. The data were analyzed in order to evaluate what extent
sonography was useful in lumbar disk herniation and canal stenosis.

Results
Sonographic Appearance of Normal and Abnormal
Structures of the Lumbar Spinal Canal

Disk material.—Herniated disks have the appearance of a
solid mass with smooth borders and well-defined margins.
They display medium echogenicity and are generally less
bright than adjacent epidural fat (Figs. 1 and 2). They may
have internal punctate bright echoes that represent calcifications
or exhibit dense shadowing if the periphery of the disk is densely
calci­fied. Herniated disks can be seen to protrude
into the spinal canal, where they may deform the thecal sac
and displace nerve roots. Lateral disk herniations (either far­
lateral herniated disks or disk herniation in the neural foramen)
either are obscured by overlying bone or are beyond the field
of view of the transducer. The intervertebral disk space can be
identified best on longitudinal scans, where this space is
marked by the interruption of the bright interface formed by
the dorsal edge of the vertebral bodies (Figs. 1C and 2C).
Disk material allows acoustic transmission to occur; this
phenomenon is best seen when the interspace is perpendic­
ular to the sonographic beam. Calcified disks may be dif­
ferrated from osteophytic spurs on longitudinal sonography
by noting the location of the intervertebral disk space in
relation to such abnormalities. Although sequestered frag­
ments of disk in the epidural space can be seen cephalad or
caudal (Fig. 3) to the vertebral interspace, it is possible that
the normal epidural soft tissue may obscure these migrated
disk fragments, particularly when they are small.

Epidural fat.—The predominant soft-tissue density in the
epidural space is fat, which appears brightly echogenic (Figs.
2C and 4), is symmetric in distribution (Fig. 4B), and tends to
become thinner in the interspace. When it is adherent to the
dorsal dura (Fig. 4A), it attenuates the sonographic beam and
interferes with adequate visualization of the canal and the
dural sac. Overabundant fat ventrally may cause confusion
since it may appear to displace the sac posteriorly (Fig. 4B).
Fat is homogeneously bright in echogenicity and symmetric
in distribution, facts that help distinguish it from scar and disk
material.

Epidural veins.—Prominent epidural veins appear as hy­
poechoic spaces within the epidural space (Fig. 5). Flowing
low-amplitude blood echoes may be observed within the
epidural veins during real-time examination. These veins,
which taper in size toward the interspace, may represent normal structures ventral to the thecal sac or they may indicate the presence of an abnormality that is obstructing the normal epidural venous flow.

Scar.—Scar can be difficult to differentiate from a disk or epidural fat because it may be either brightly echogenic (Figs. 6A and 6B) and mimic fat or may be of medium to low echogenicity (Fig. 6C) and mimic disk material. One helpful distinguishing feature of scar tissue is that it appears to merge with the dura without a distinct margin (Fig. 6). If the scar is located dorsally, it attenuates the sonographic beam and interferes with visualization of the spinal canal and thecal sac. Five patients who had prior surgery were noted to have residual scar tissue. In two patients, the scar was brightly echogenic, lateral in location, and at the level of the intervertebral disk space. In three patients, the scars were of medium to low echogenicity with poorly defined borders that merged with the dural surface. In all cases, surgical excision showed scar tissue.

Swollen nerve roots.—Swollen nerve roots may be mistaken for herniated disks as they exit the thecal sac since they can be of similar echogenicity and are also well margined; however, typically they are round and well defined on transverse views (Fig. 7) but poorly defined on longitudinal views, cannot be traced back to the disk space, and do not compress the adjoining dura.

Bulging anulus.—Diagnosis of a bulging anulus is made on the longitudinal view by observing a small soft-tissue density at the interspace bulging into the canal. When larger in size, a bulging anulus may be difficult to distinguish from central disk herniation (Fig. 8). Longitudinal and axial views show no significant thecal sac compression in bulging anuli.

Subluxation.—On a longitudinal sonogram, vertebral body subluxations can be detected by finding the intervertebral disk space, determining the location of the posterior surface of each vertebra caudad and cephalad to the disk space, and observing their relative alignments (Fig. 9). Epidural soft tissues and disk material may be visible between the edge of the more anterior vertebra and the dura (Figs. 9B and 9C). Axial views at the interspace where the subluxation occurred may incorrectly suggest the presence of herniated disk since the anteroposterior diameter of the sac may be decreased and soft tissue is present ventral to the sac (Fig. 9D). A straight longitudinal scan is crucial in these instances since normal soft tissues dorsal to a subluxed vertebral body do not protrude posterior to the more posterior vertebral body (Fig. 9). When subluxation and disk herniation coexist, establishing the diagnosis of a herniated disk and monitoring its
Fig. 4.—Epidural fat (canal stenosis).
A, Axial sonogram. Clusters of bright echogenic masses (arrows) adherent to dorsum of dura represent epidural fat (surgical observation). Note relatively poor visualization of contents of thecal sac owing to attenuation of beam.
B, Axial sonogram in another patient. Depth of epidural soft tissues (arrows) posterior to S1 is considerable. However, bright echogenicity, uniformity of distribution, and lack of deformity of ventral aspect of thecal sac are criteria indicating this represents epidural fat rather than disk material or soft-tissue tumor.

Fig. 5.—Epidural veins (canal stenosis). On longitudinal sonogram, epidural soft tissues, bounded dorsally by ventral dura (solid arrows), are prominent; within them are hypoechoic areas representing veins (arrowheads). Epidural soft tissues taper toward interspace (open arrows). When prominent veins such as these are present, small particles representing flowing blood may be seen during real-time sonography.

Fig. 6.—Scar in three patients who had undergone surgery previously.
A, Axial sonogram. Dorsal scar (long arrows) is irregular and heterogeneous in echogenicity; its interface with dura is effaced. The only portion of dura (short arrows) that is clearly visualized is surrounded by CSF. Thecal sac is poorly visualized because of diminished sonographic penetration. Small bright echo (arrowhead) represents calcification.
B, Right parasagittal sonogram. Hyperechoic soft-tissue mass (straight arrows), inseparable and indistinguishable from epidural fat (!), is seen at L5-S1 interface (curved arrow). Mass was suspicious for herniated disk because of its location and its mass effect; however, when this space was explored, soft tissue proved to be a scar.
C, Axial sonogram. Hypoechoic scar (arrows) is seen on left as an irregularly shaped soft-tissue mass with poorly defined edges silhouetting dura.

removal may be difficult. In this situation the presence of thecal sac compression is the key point in establishing the proper diagnosis (Fig. 10).

Arachnoiditis.—Intradural arachnoiditis is seen sonographically as tethered, clumped, and deformed nerve roots and thecal sac deformity [6, 7]. On real-time evaluation there is lack of the typical CSF pulsations when the arachnoiditis is severe. Two of our patients who had prior surgery and one of whom had prior Pantopaque myelography had evidence of arachnoiditis on sonography (Fig. 11). The diagnosis of arachnoiditis is difficult to establish sonographically in the face of substantial chronic compression of the thecal sac or if a dural tear has occurred because CSF may not be present to serve as a hypoechoic contrast to the nerve roots and dura. Pan-

AJNR: 11, January/February 1990 INTRAOPERATIVE SONOGRAPHY IN DISK HERNIATION 35
topaque droplets within the thecal sac have a characteristic hyperechoic interface with the CSF, which should not be mistaken for adhesions (Fig. 12).

Application of Intraoperative Sonography in Disk Herniation, Canal Stenosis, and Spondylolisthesis

For the sake of simplicity, our results in disk herniation and canal stenosis, whether congenital or secondary to spondylolisthesis or trauma, are reported and discussed separately, even though they were often noted to occur simultaneously.

Herniated disk.—We include in this group a total of 63 patients, 42 with a definitive preoperative diagnosis of lumbar herniated disk, 20 with a diagnosis of suspected herniated disk, and one in whom the diagnosis of herniated disk was not suspected preoperatively but was made at surgery (this patient had canal stenosis) (see Tables 1 and 2).

Fig. 7.—Swollen nerve root (canal stenosis). Axial sonogram shows well-defined round soft-tissue mass (arrows) within lateral epidural fat on right. Note that thecal sac is not compressed. This appearance is typical of swollen nerve root.

Fig. 8.—Bulging anulus (canal stenosis). When a prominent soft-tissue mass (arrow) is seen, such as this one at L3–L4 level, differentiation from a small central disk herniation is difficult. This was considered to most likely represent a bulging anulus because of absence of nerve-root compression.

Fig. 9.—Spondylolisthesis and canal stenosis. A, At L3–L4, MR shows anterior displacement of L3 on L4, a degenerative disk, and an osteophyte protruding into canal. B, Longitudinal sonogram correlates well with preoperative MR, showing osteophytic spur (arrow), spondylolisthesis (arrowheads), and resultant thecal sac compression. Sonography serves to rule out any associated disk herniation. C, Longitudinal sonogram in another patient shows anterior displacement of L4 on L5. At L4–L5 interspace, disk material does not protrude beyond dorsum of L5 into canal. Sonography indicates absence of herniated nucleus pulposus, which could not be ruled out on preoperative myelography or CT myelogram because of severe canal narrowing with a high-grade block. D, Axial sonogram in a different patient may be misleading, since ventral epidural soft tissues (arrows) at site of subluxation mimic a central disk flattening thecal sac. Longitudinal sonogram showed spondylolisthesis without herniated nucleus pulposus.
Fig. 10.—Herniated disk, spondylolisthesis, and canal stenosis.

A, Longitudinal sonogram shows significant anterior displacement of L4 on L5 and epidural soft tissue (arrows) between subluxed bodies compressing thecal sac and roots. Since normal epidural soft tissues associated with spondylolisthesis do not cause such compression, a diagnosis of herniated nucleus pulposus was made.

B, Final longitudinal sonogram after discectomy reveals no residual compressive soft-tissue mass at level of disk space. Note that nerve roots are not deviated. A spondylolisthesis is still noted along with normal epidural soft tissues (arrows) behind L4 body. A small spur from superior portion of L5 body is present (arrowhead).

Fig. 11.—Arachnoiditis (previous surgery).

A and B, Axial (A) and longitudinal (B) scans. Clumped nerve roots that fill thecal sac are adherent to dorsal and lateral arachnoid walls. The only subarachnoid fluid present (sac) is loculated and causing a mass effect, an appearance characteristic of subarachnoid cyst. A bulging anulus (arrow) is present at L2–L3 interspace.

Fig. 12.—Pantopaque (previous surgery). Linear echoes (arrows) in dependent portion of thecal sac represent acoustic interface between CSF and oily medium Pantopaque. Pantopaque is anechoic. This appearance should not be mistaken for abnormally coursing roots or intradural scarring.

Intraoperative sonographic diagnosis and surgical correlation.—Fifty-nine of these 63 patients with herniated disk had a baseline sonogram following laminectomy (Table 2). Considering these 59 patients as a group, sonographic diagnosis of herniated disk was made in 43 and was confirmed surgically in 41; no herniated disk was found in two. In the remaining 16, the sonographic diagnosis of no herniated disk was made in 11 patients and confirmed surgically in 10, but sonography missed one herniated disk found at surgery. Sonography diagnosed scar in one patient and scar vs herniated disk in two; scar was found in all three at surgery. Sonography could not exclude the presence of herniated disk in two; in neither was a herniated disk found at surgery.

Within the group of 20 patients with the preoperative radiographic diagnosis of suspected or equivocal disk herniation and canal stenosis, one had no baseline sonogram. Of the remaining 19, 10 had severe canal narrowing with block (Table 2). Sonography showed associated disk herniation in four (Fig. 3) and no disk herniation in four (Fig. 9C) (all eight with surgical correlation); sonography was equivocal in two. Surgical exploration of the questionable area in these two patients revealed no disk herniation.

Sonography diagnosed and surgery found an unsuspected herniated disk in a patient undergoing surgery for canal stenosis (Fig. 2; see Table 2).

Criteria for complete discectomy or further surgery.—The criteria established for complete removal of disk material (Fig. 1) include the absence of the initially identified soft-tissue mass and the return of the thecal sac to a normal or nearly normal shape. If residual mass and deformity of the thecal sac were identified (Fig. 1), they formed the basis for recommending reevaluation of the surgical field in hopes of finding and removing additional disk material.

Sonographic examination of the surgical field after discectomy was performed in 41 patients (including three who had not had a baseline sonogram). Of these, 24 had no residual
disk material by initial postdiskectomy sonographic criteria. In 17, however, residual disk fragments were identified by sonography. As a result, in 16 patients the operative site was reexplored, the presence of additional disk material was confirmed, and the extra fragments were removed. In all 16, the surgical field was monitored until no more disk material was present by sonographic criteria. In the other patient the surgeon judged that the presumed residual disk fragments were not significant and further surgery was not warranted.

Canal stenosis.—The preoperative diagnosis of focal or generalized canal stenosis was made in 84 cases, including those patients with (42) and without (42) associated herniated disks. Of these 84 cases, 79 had spondylosis (Figs. 13 and 14) (including degenerative spondylolisthesis), four had old fractures with secondary canal narrowing, and one had congenital canal stenosis. Eighteen patients had prior surgery at the levels of canal narrowing; 66 had no prior surgery.

Intraoperative sonographic evaluation and surgical correlation.—Canal stenosis secondary to enlarged facets resulted in a triangular or irregular shape to the thecal sac, a smaller transverse than anteroposterior canal diameter, and crowding of the nerve roots (Figs. 13A and 14A). The sonographic observations concerning bony impingement corresponded to the surgical findings in all cases.

Criteria for adequate decompression or further surgery.—Following bone resection in an adequately decompressed spine, sonography demonstrates a significant change in the contour of the thecal sac compared with the initial postlaminectomy scans. A round or nearly round sac should be seen in which there is no deviation of the roots from their normal course. The bony canal that results from this decompression should have an open rectangular shape (Fig. 13B) with a visualized space between the lateral wall of the thecal sac and the residual facets (Figs. 1E, 2B, and 13B).

In the 84 cases, 65 were judged by these sonographic criteria at the time of surgery to have an adequately decompressed canal. Nineteen patients were found to have residual bony compression of the sac (Figs. 13 and 14). Fifteen of these cases had further surgical manipulations in an attempt to achieve adequate decompression; on the final sonographic examination, two had residual but mild compression judged to be acceptable by the surgeon and the radiologist, while 13 were judged to have a good decompression. In the other four patients, the surgeons decided to do no further surgery despite the sonographic demonstration of residual sac compression. The reasons for this included mild compression (one patient), reluctance to perform more extensive laminectomies for fear of destabilizing the spine (two), and the lack of symptoms corresponding to the bony abnormality (one).

Discussion

In order to achieve clinically satisfactory long-term results in patients undergoing lumbar surgery for disk herniation, spondylosis, and/or canal stenosis, complete removal of the offending disk or bone is necessary. While imaging examinations such as myelography, CT myelography, and MR can accurately demonstrate preoperatively the symptom-producing abnormalities, the intraoperative assessment of the lumbar spine and the progress of the operative procedure is usually performed by simple visual inspection. Therefore, suboptimal evaluation of the surgical field may occur and a potential exists for the incomplete removal of herniated disk material and/or inadequate bony decompression of neural tissue. For this reason a more accurate method of assessing the progress of the surgical procedure is desirable. Intraoperative sonography can clearly display normal and abnormal intraspi-

TABLE 1: Pre- and/or Operative Diagnoses

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>No. of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk herniation without canal stenosis</td>
<td>20</td>
</tr>
<tr>
<td>Canal stenosis without disk herniation</td>
<td>41</td>
</tr>
<tr>
<td>Disk herniation plus canal stenosis</td>
<td>43</td>
</tr>
<tr>
<td>Total</td>
<td>104</td>
</tr>
</tbody>
</table>

TABLE 2: Baseline Sonographic Diagnoses and Surgical Correlation in 59 Patients Who Had Preoperative and/or Operative Diagnoses of Herniated Disk and Baseline Sonography

<table>
<thead>
<tr>
<th>Preoperative Radiographic Diagnosis</th>
<th>No. of Cases</th>
<th>Findings on Baseline Sonogram</th>
<th>Surgical Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herniated disk</td>
<td>39</td>
<td>36 Herniated disk</td>
<td>34 Herniated disk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scar</td>
<td>1 Scar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 No herniated disk</td>
<td>1 No herniated disk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 No herniated disk</td>
<td>2 No herniated disk</td>
</tr>
<tr>
<td>Suspected herniated disk</td>
<td></td>
<td>4 Herniated disk</td>
<td>4 Herniated disk</td>
</tr>
<tr>
<td>Canal stenosis with block</td>
<td>10</td>
<td>4 No herniated disk</td>
<td>4 No herniated disk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 ?Herniated disk</td>
<td>2 No herniated disk</td>
</tr>
<tr>
<td>Scar vs herniated disk</td>
<td>6</td>
<td>1 Herniated disk/swollen nerve root</td>
<td>1 Herniated disk/swollen nerve root</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Scar vs herniated disk</td>
<td>2 Scar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 No herniated disk</td>
<td>2 No herniated disk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Herniated disk</td>
<td>1 Herniated disk</td>
</tr>
<tr>
<td>?Herniated disk</td>
<td>2</td>
<td>2 No herniated disk</td>
<td>2 No herniated disk</td>
</tr>
<tr>
<td>Herniated disk vs lymphoma</td>
<td>1</td>
<td>1 Herniated disk</td>
<td>1 Herniated disk</td>
</tr>
<tr>
<td>No herniated disk (canal stenosis)</td>
<td>1</td>
<td>1 Herniated disk</td>
<td>1 Herniated disk</td>
</tr>
</tbody>
</table>

Note.—Only those patients in whom baseline sonograms were obtained are represented here.
Fig. 13.—Posterolateral bony decompression for canal stenosis. Two patients were examined with axial sonography after different degrees of bony decompression for canal stenosis.

A. Persistent bony compression in a patient with previous surgery. Following laminectomies and medial facetectomies, enlarged facets (F) are causing significant constriction (arrowheads) and irregularity of sac. Note crowded roots and lack of visualized CSF. Further bone removal followed this sonogram and included extending bilateral medial facetectomies, which resulted in a more normal-appearing sac and diminished root compression.

B. Adequate lateral decompression, primary operative procedure. In the second patient, bilateral laminectomies and facetectomies resulted in a rounded (normal) thecal sac with no areas of bone compression. In the left lateral gutter, echogenic material represents fresh blood (b) in operative site. Bony canal now has shape of wide, open-ended rectangle (arrowheads).

Fig. 14.—Canal stenosis: residual bony compression of thecal sac at multiple levels in a patient with previous surgery. Sonography was performed after bilateral laminectomies and facetectomies in patient with multiple-level canal stenosis.

A. Axial view at L3–L4 shows continuing facet encroachment (arrows) on both lateral aspects of canal. There is no space between edges of facets and thecal sac. Posterior edge of vertebral body (arrowheads). Note that shape of canal is that of a narrow-based rectangle (compare with Fig. 13B).

B. At L4–L5 level there is adequate decompression of left aspect of canal, while right is significantly compressed by facet. Note difference in space between facet on left and thecal sac (between dotted lines) and lack of space in same location on right.

Facetectomies were extended at both levels; final sonogram was interpreted as showing adequate bony decompression at all levels. Blood is filling epidural space on left and is seen layering over dorsal dura on both images. Lucent area within settled blood (between arrows in B) represents active bleeding, a finding appreciated on real-time monitoring of surgical field.

Ventral epidural fat may be abundant, has a symmetric distribution, lies directly posterior to the vertebral bodies, and is higher in echogenicity than disk material. Epidural veins (Fig. 5) are of low echogenicity and are most prominent posterior to the midportions of the vertebral bodies rather than at the disk levels. Observing bloodstream echoes in motion in real time permits easy differentiation from disk fragments. Scar tissue (Fig. 6) is of mixed echogenicity and its interface with surrounding tissues is poorly defined, while a herniated disk is sharply defined. The differentiation of bulging disk material (Fig. 8) from a central disk herniation is difficult with sonography; however, when this problem arises, one can clearly establish the presence or absence of root displacement. Problems do exist in identifying far-lateral disk herniations, that is, those that do not form a silhouette against either the anechoic CSF or adjacent nerve roots.

Panopaque within the thecal sac forms a fluid level with the CSF, and its characteristic appearance (Fig. 12) can be differentiated from intradural adhesions or aberrantly coursing nerve roots. When intraarachnoid adhesions are present the nerve roots clump together, and whatever remaining CSF there may be is located in collections within the thecal sac (Fig. 11). If there are adhesions all around the sac, then no CSF may be seen. On real-time evaluation, the typical CSF pulsation is lacking when the arachnoiditis is severe. Knowledge of these sonographic characteristics of normal and abnormal intraspinal structures is crucial when monitoring the progress of spine surgery.

The ability to separate normal structures that occur in the epidural space directly adjacent to the thecal sac from disk material can have important implications in the surgical treat-
ment of disk herniation. Sonography can readily identify the conus medullaris [8] and its relationship to herniated disks or compressing bony structures. The location of the conus may influence the surgical approach to decompression. In our series, residual disk material was identified intraoperatively in 17 of 41 patients examined after routine diskectomy (Fig. 1D). It is most likely that such disk fragments would not have been removed at the time of the original surgery. A common cause of failed backs is persistent disk herniation [9]. Whether these patients would have experienced recurrent low-back symptoms had these residual fragments not been removed is, of course, impossible to determine, but obviously the removal of as much abnormal material as possible is desirable.

Frequently in a patient with spondylolisthesis, it is difficult to be certain whether or not there is associated herniated disk material or whether the ventral impression on the thecal sac by disk material is mainly a manifestation of the forward positioning of a vertebral body relative to the disk material below it. Longitudinal sonograms can assist in this important distinction. When spondylolisthesis without disk herniation is present, just the highly echogenic borders of the malaigned vertebral bodies are seen (Figs. 9B and 9C). Conversely, when herniated disk material is present in conjunction with spondylolisthesis, the medium echogenicity of the disk can be identified between the edges of the subluxed vertebra (Fig. 10A). Similarly, when spondylolisthesis causes severe narrowing of the canal it is often difficult to establish preoperatively whether herniated disk material is also present, and longitudinal sonograms are crucial to the diagnosis (Fig. 3). In eight of 10 patients with severe stenosis secondary to spondylolisthesis, sonography was able to establish the presence or absence of disk herniation (Table 2; Figs. 3 and 9C). This has clear implications for the surgical management of such patients because the herniated disk will be removed after the laminectomy but before the lateral bone fusion (Fig. 10B).

When bony decompression of the lumbar canal is being performed either for degenerative spondylolisthesis with secondary canal narrowing or for congenital canal stenosis, sonography provides an immediate evaluation of the effect of the bone on adjacent neural tissue (Figs. 13 and 14). It has been reported that the most common cause of failed backs is failure to recognize or adequately treat lateral stenosis [9]. Sonography can show when sufficient bone (laminae and facets) has been removed to result in a decompressed canal; when this has happened, the sac will assume a rounded configuration (Fig. 13B). However, the sonographic observation that the thecal sac is encroached on either by facets (Figs. 13A and 14) or by ventral spurs may convince the surgeon to extend the facetectomies or to attempt resection of the spur in order to relieve neural compression. In 84 of our patients who underwent bone removal for either generalized or focal canal narrowing, sonography showed residual compression in 19, after what was believed on initial inspection of the surgical field to be adequate bone removal. In 15 of those 19, further bony removal was undertaken to achieve optimal decompression of the canal. In the other four, clinical considerations convinced the surgeon that further surgery was not warranted.

Sonography does not significantly prolong surgical time [10]. An earlier report addressing the issue of time require-