Chronic communicating hydrocephalus and periventricular white matter disease: a debate with regard to cause and effect.

A E George

AJNR Am J Neuroradiol 1991, 12 (1) 42-44

http://www.ajnr.org/content/12/1/42.citation
Organization
[8], and they may be at greater risk for falls [9]. Thus, a substantial difference exists structurally and functionally between (1) patients with deep white matter infarcts and (2) patients with periventricular microvascular disease uncomplicated by infarcts. Clinical management seldom is affected by our determination, and therefore we are not usually asked to make this distinction.

In order to make the distinction between infarcts and microvascular disease, proton-density and T1-weighted images can be helpful. The patches of demyelination due to microvascular disease tend to be poorly demarcated, and on proton-density images, they show higher signal intensity than CSF. Infarcts tend to be more sharply margined, and on T1-weighted sequences, they show lower signal intensity than brain. The patches of microvascular disease rarely are visible on T1-weighted sequences.

In addition, single-photon emission CT (SPECT) perfusion scanning with I-123 iodoamphetamine or 99mTc-HMPAO [10, 11] may become a valuable differential diagnostic tool. SPECT studies have shown little in the way of deficits in association with microvascular disease, whereas true infarcts generally show perfusion deficits that are extensive and often much larger than might be expected for the size of the structural lesions. This, however, is a matter that needs to be proved.

Thus, I would discourage the blanket use of the diagnosis deep white matter infarcts when describing periventricular T2 hyperintensities, and I would encourage an attempt to make the distinction between microvascular disease and subcortical (deep white matter) infarcts or, if this is not possible, to use the less specific terms microvascular disease or hypertensive-type microvascular disease.

Relationship of Microvascular Disease to Normal-Pressure Hydrocephalus

The objective of Bradley et al. [1] was to determine if a statistical association exists between microvascular disease (which they choose to call deep white matter infarction) and NPH. This effort stems from previous reports in the neurologic literature dating as far back as 1943 [12] that have noted an association between hypertension and hydrocephalus [13, 14]. Bradley et al. found a statistically significant association between T2 hyperintensities and NPH. However, this association may or may not be one of cause and effect. In fact, periventricular changes in hydrocephalus may be the result of the hydrocephalus and not the cause. Light and electron microscopic studies [15, 16] of experimental hydrocephalus have shown detachment of the ependymal cells, rarefaction of subependymal tissues, and a marked increase in the subependymal extracellular space resulting in irreversible damage to the axons and myelin and gliosis (Fig. 1). These changes would be expected to appear as T2 hyperintensities on MR. Furthermore, reports [17–20], including our own [20], in the literature dating back to the 1960s on positron emission tomography (PET) and cerebral blood flow found that a reduction in blood flow, as well as in metabolism, is associated with hydrocephalus and that it improves after shunting procedures. Matthew et al. [19] reported that both cerebral blood flow and blood volume increased after lumbar puncture in patients with NPH. Patients with maximal increases in cerebral blood flow and cerebral blood volume after shunting showed the most consistent clinical improvement. This evidence suggests that the periventricular structural and functional changes may be the result rather than the cause of the NPH. Bradley et al. need to prove that the opposite is true before we can accept their hypothesis.

Diagnosis of Hydrocephalus

On the basis of their criteria for hydrocephalus (ventriculomegaly associated with increased CSF flow void), Bradley et al. [1] report that 83% of 72 consecutive patients with presumed deep white matter infarction also have hydrocephalus. This astounding result begs the question: How accurate are the criteria used to establish the diagnosis of hydrocephalus? The authors previously reported [21] that NPH is best distinguished from atrophy on the basis of a marked CSF flow void resulting from the to-and-fro motion of CSF through the aqueduct and contiguous third and fourth ventricles. Other investigators [22, 23], including our own, have been unable to replicate these results. In fact, Stollman et al. [23] found that the prevalence of CSF signal void was higher in their atrophy cases than in the hydrocephalus group. Only two of
their six patients who had shunts showed a signal void preoperatively. This sign was unchanged after shunting. In the series of Bradley et al. [1] as well, no difference was found in the extent of the CSF flow void when the pre- and postshunt MR images of four patients were compared. These data can be interpreted in only one way. The CSF signal void sign confirms the patency of the aqueduct and the third and fourth ventricles, but otherwise it has not been helpful. Again, the burden of proof remains with its proponents.

In summary, I advise caution. The innovative thinking of Bradley et al. should be commended.

REFERENCES

4. Awad IA, Johnson PC, Spetzler RF, Hodak HA. Incidental subcortical lesions identified on magnetic resonance imaging in the elderly. II. Post-mortem pathological correlations. Stroke 1986;17(6):1090–1097
18. Raichle ME, Eichling TO, Gado M, Grub RL. Cerebral blood volume in dementia (abstr). Neurology 1974;24:350
23. Stollman AL, George AE, Pinto RS, de Leon MJ. Periventricular high signal lesions in a single void on magnetic resonance imaging in hydrocephalus. Acta Radiol 1986;369[suppl]:388–391