Angle-closure glaucoma consequent to embolization of dural cavernous sinus fistula.

K C Golnik, S A Newman and R Ferguson


http://www.ajnr.org/content/12/6/1074.citation

This information is current as of October 21, 2023.
Angle-Closure Glaucoma Consequent to Embolization of Dural Cavernous Sinus Fistula

Karl C. Golnik,¹ Steven A. Newman,¹ and Robert Ferguson²

A variety of sequelae are associated with embolization of a cavernous sinus fistula. Transient or permanent cranial nerve palsies and cerebral ischemic events are most frequent [1]. We report a case of acute angle-closure glaucoma following embolization of a dural cavernous sinus fistula. Prompt recognition and treatment prevented optic nerve damage and visual loss.

Case Report

A 74-year-old woman presented with a 3-month history of right facial ache radiating to the right forehead and temporal region. Three weeks prior to presentation the left eye became red and irritated and binocular horizontal diplopia developed. Therapy was indicated because of the visual loss. We report a case of acute angle-closure glaucoma following embolization of a dural cavernous sinus fistula. The preferred treatment of symptomatic cavernous sinus fistula is embolization either by detachable balloon or by a variety of particulate materials [2]. The choice of technique depends on the source of the feeders and volume of flow. In a recent review of cavernous sinus fistula embolization, successful closures averaged 92% [1]. Undesirable sequelae have, however, been reported. Transient or permanent cranial nerve palsies are the most frequently recognized complications, with rates of occurrence of 0–67% and 0–33%, respectively [1-15]. In treating direct fistulas, Debrun et al. [3] found the rate of cranial nerve abnormalities to increase when more than one balloon was used [3]. The increased volume occupied by multiple balloons presumably causes nerve palsies by direct compression or focal vascular hypoperfusion. Cerebral ischemia most often occurs immediately following the procedure [2, 3, 5-7, 9, 12, 15]. Less commonly, ischemic events have been reported days to weeks later [13, 16]. The pathophysiology of ischemia may include inadvertent embolization of inappropriate vessels or propagation of occlusion-induced thrombosis [2, 3]. Rarely, other sequelae, including intraorbital hemorrhage [6], airway obstruction [9], and death following vascular perforation, have been reported [6, 8]. It has recently been recognized that choroidal effusions and secondary angle closure may be associated with dural cavernous fistulas [17]. It is interesting that in one of these previously reported cases angle closure occurred after embolization, although this was not specifically commented upon.

Angle-closure glaucoma occurs when the aqueous humor outflow channels (trabecular meshwork) are occluded by the peripheral iris. Without egress, aqueous humor accumulates and the intraocular pressure rises. Such symptoms as ocular or periorbital pain, headache, blurred vision, and visual disturbances consisting of halos or rainbows around objects may develop within hours of angle closure. Signs of abrupt increase in intraocular pressure may include conjunctival injection, corneal haziness (edema), a minimally reactive pupil, and, in angle closure, a shallow anterior chamber. Ophthalmic

Discussion

The preferred treatment of symptomatic cavernous sinus fistula is embolization either by detachable balloon or by a variety of particulate materials [2]. The choice of technique depends on the source of the feeders and volume of flow. In a recent review of cavernous sinus fistula embolization, successful closures averaged 92% [1]. Undesirable sequelae have, however, been reported. Transient or permanent cranial nerve palsies are the most frequently recognized complications, with rates of occurrence of 0–67% and 0–33%, respectively [1-15]. In treating direct fistulas, Debrun et al. [3] found the rate of cranial nerve abnormalities to increase when more than one balloon was used [3]. The increased volume occupied by multiple balloons presumably causes nerve palsies by direct compression or focal vascular hypoperfusion. Cerebral ischemia most often occurs immediately following the procedure [2, 3, 5-7, 9, 12, 15]. Less commonly, ischemic events have been reported days to weeks later [13, 16]. The pathophysiology of ischemia may include inadvertent embolization of inappropriate vessels or propagation of occlusion-induced thrombosis [2, 3]. Rarely, other sequelae, including intraorbital hemorrhage [6], airway obstruction [9], and death following vascular perforation, have been reported [6, 8]. It has recently been recognized that choroidal effusions and secondary angle closure may be associated with dural cavernous fistulas [17]. It is interesting that in one of these previously reported cases angle closure occurred after embolization, although this was not specifically commented upon.

Angle-closure glaucoma occurs when the aqueous humor outflow channels (trabecular meshwork) are occluded by the peripheral iris. Without egress, aqueous humor accumulates and the intraocular pressure rises. Such symptoms as ocular or periorbital pain, headache, blurred vision, and visual disturbances consisting of halos or rainbows around objects may develop within hours of angle closure. Signs of abrupt increase in intraocular pressure may include conjunctival injection, corneal haziness (edema), a minimally reactive pupil, and, in angle closure, a shallow anterior chamber. Ophthalmic

Received January 30, 1991; revision requested April 5, 1991; revision received April 26, 1991; accepted May 15, 1991.

¹ Department of Ophthalmology, University of Virginia Health Sciences Center, Charlottesville, VA 22908. Address reprint requests to S. A. Newman.
² Department of Radiology, University of Virginia Health Sciences Center, Charlottesville, VA 22908.

Fig. 1.—74-year-old woman with 3-month history of right facial ache radiating to right forehead and temporal region.

A, Left external carotid angiogram, lateral view, shows left dural cavernous sinus fistula. Venous drainage from the fistula is through the dilated left superior ophthalmic vein (arrows).

B, Several hours after embolization the left anterior chamber was flat. Note the apposition of the corneal endothelium (large arrowhead) and the iris surface (small arrowhead). (arrow = intraocular lens).

C, The left anterior chamber deepened after therapy. Note the distance between the corneal endothelium (large arrowhead) and the iris surface (small arrowhead).

Intervention should be immediate and may include topical, oral, and IV medications; laser iridotomy; and perhaps surgical filtration procedures. Persistent increases in intraocular pressure will lead to optic nerve damage or complete loss of vision.

Angle-closure glaucoma may be related to anatomically narrow angles (primary) or may occur as a consequence of any process that shifts the lens or iris forward. The choroid is a vascular plexus between the retina and the sclera that provides nourishment to the outer retina. Choroidal arterial supply is from the posterior ciliary arteries (branches of the ophthalmic artery), and venous drainage occurs through the vortex veins. These veins drain through the superior ophthalmic vein to the cavernous sinus. Ciliochoroidal effusion is an accumulation of fluid in the potential space (suprachoroidal) between the choroid and the sclera. The effusion is usually caused by vascular transudation resulting from an increase in the transcapillary pressure. Either increased venous pressure or decreased intraocular pressure will increase the transcapillary pressure. Either increased venous pressure or decreased intraocular pressure will increase the transcapillary pressure [18]. Alternatively, a hemorrhagic effusion can occur and has been reported in association with carotid cavernous fistula [19]. Presumably, the vessels within the suprachoroidal space, distended by increased venous pressure, may rupture owing to fluctuations in transcapillary pressure. Thus, both types of effusion can occur with changes in transcapillary pressure. This suprachoroidal fluid accumulation causes the less rigid choroid with overlying retina to bulge into the vitreous space. The lens and iris are then rotated forward, occluding the trabecular meshwork. Thus, aqueous humor cannot exit the eye and intraocular pressure increases.

The pathogenesis of our patient’s choroidal effusion is unclear. Certainly thrombosis of the superior ophthalmic vein would increase vortex vein pressure and could theoretically produce transudation and resultant choroidal effusion. However, MR imaging indicated persistent flow in the superior ophthalmic vein. Preembolization angiography demonstrated dilatation and retrograde flow in the superior ophthalmic vein. This may impede choroidal vascular outflow somewhat, but only occasionally enough to produce effusion [17]. It is likely that during embolization, flow in the superior ophthalmic vein changed, resulting in a transient increase in venous pressure. This sort of transient increase in intravenous pressure is not uncommon after occlusion of a carotid cavernous fistula. The increased venous pressure combined with our patient’s low intraocular pressure could have increased the transcapillary pressure enough to cause either a transudative or hemorrhagic choroidal effusion. Data supporting this hypothesis are derived from an investigation of eyes with compromised vortex vein outflow caused by a scleral buckling procedure for retinal detachment [20]. Choroidal effusion was found to be most highly associated with the combination of low intraocular pressure and poor venous outflow.

Regardless of the mechanism, rapid recognition of the signs and symptoms of increased intraocular pressure is essential in order to prevent permanent optic nerve damage. Careful monitoring in the immediate postembolization period is necessary to recognize these treatable, but potentially irreversible, ocular sequelae.

REFERENCES
4. Tsai FY, Heshima GB, Mehringer CM, et al. Delayed effects in the
treatment of carotid fistulas. AJNR 1983;4:357–361
abnormalities and intravascular therapy of traumatic carotid cavernous
6. Heshima GB, Higashida RT, Halbach VV. Advances in the diagnosis and
7. Keitner JL, Gittinger JW Jr, Miller NR, Burde RM. A red eye and high
intraocular pressure. Surv Ophthalmol 1987;31:328–336
8. Palestine AG, Young BR, Piepgras DG. Visual prognosis in carotid
catheter technique in the treatment of traumatic intracranial arteriovenous
10. Kalina RE, Kelly WA. Proliferative retinopathy after treatment of carotid-
11. Chowdhary UM. Treatment of carotid cavernous fistula using a balloon
tipped intra-arterial catheter. J Neurol Neurosurg Psychiatry 1978;41:996–
1012
12. Sekhar LN, Heros RC, Kerber CW. Carotid cavernous-fistula following
percutaneous retrogasserian procedures: a report of two cases. J Neuro-
surg 1979;51:700–706
13. Farley MK, Clark RD, Fallor MK. Spontaneous carotid-cavernous fistula
15. Berenstein A, Scott J, Choi IS, Perskey M. Percutaneous embolization of
arteriovenous fistulas of the external carotid artery. AJNR 1986;7:
937–942
16. Kerber CW. Use of balloon catheter in treatment of cranial arterial anom-
17. Fourman S. Acute closed-angle glaucoma after arteriovenous fistulas. Am
1–19
19. Buus DR, Tse DT, Parrish RK. Spontaneous carotid cavernous fistula
presenting with acute angle closure glaucoma. Arch Ophthalmol
1989;107:596–597
20. Aasberg TM. Experimental serous and hemorrhagic uveal edema associated