Cranial CT and MR in the Klippel-Trenaunay-Weber syndrome.

D W Williams, 3rd and A D Elster


http://www.ajnr.org/content/13/1/291

This information is current as of October 21, 2023.
Cranial CT and MR in the Klippel-Trenaunay-Weber Syndrome

Daniel W. Williams III and Allen D. Elster

Summary: This report describes the intracranial CT and MR findings in two cases of Klippel-Trenaunay-Weber Syndrome. The findings are 1) markedly enhancing choroid plexuses, 2) severe cerebral atrophy, 3) cerebral calcifications, and 4) angiomatous leptomeningeal enhancement. The findings may resemble those seen in cases of bilateral Sturge-Weber syndrome. The two diseases should be distinguishable by the external stigmata. The authors raise the question of a spectrum of involvement in the angiodyplasias of Klippel-Trenaunay-Weber syndrome and Sturge-Weber syndrome with considerable overlap.

Index terms: Phakomatoses

The Klippel-Trenaunay-Weber syndrome (KTWS) is a rare congenital anomaly characterized by 1) cutaneous port-wine hemangioma (usually unilateral and involving an extremity, 2) venous varicosities appearing on the affected body part, and 3) osseous and soft-tissue hypertrophy, also of the affected body part (1-3). A variety of associated central nervous system (CNS) abnormalities, overlapping with those of the more common Sturge-Weber syndrome (SWS), have also been identified (4, 5). We describe the strikingly similar and highly unusual intracranial findings in two cases of KTWS, demonstrated by cranial computed tomography (CT) and magnetic resonance (MR) imaging.

Case Report

Case 1

The first patient was a black male infant born at term who presented at birth with glaucoma, asymmetric upper extremities (Fig. 1), and extensive port-wine nevi. Bilateral cutaneous lesions involved the scalp and face (V1 and V2 distribution of cranial nerve 5), the upper and lower extremities, and the shoulders, upper back, and chest. Enhanced cranial CT, obtained on the second day of life, demonstrated enlarged, enhancing choroid plexus (Figs. 2A and 2B). Gd-DTPA-enhanced MR scan, performed later the same day, showed marked choroid plexus enhancement but was otherwise unremarkable (Fig. 2C). Four months later, the patient presented with focal seizures involving the left face and arm. A CT scan demonstrated rapid development of gross cerebral atrophy and bilateral cerebral calcifications, as well as intense choroid plexus enhancement and diffuse angiomatous leptomeningeal enhancement (Figs. 2D and 2E).

Case 2

The second patient was a white male infant born at term who presented at birth with glaucoma and cutaneous hemangioma involving the face, head, and neck bilaterally, (V1,2,3 distribution of cranial nerve 5) as well as the left shoulder, arm, upper chest, and buttock, the backs of both lower extremities, and the lateral aspects of both feet. He developed seizures at 4 months of age that were mostly focal involving the face and extremities (especially the right upper extremity). At age 18 months, the patient presented with phenytoin toxicity, developmental delay, and an enlarging left upper extremity. A cranial CT scan revealed marked bilateral cerebral atrophy, extensive bilateral cortical calcifications, and mild angiomatous leptomeningeal enhancement (Figs. 3A and 3B). An MR scan, performed the same day, demonstrated prominent choroid plexus with high signal on T2-weighted images, asymmetric cerebral atrophy, and extensive areas of decreased signal corresponding to parenchymal calcifications on CT scan (Figs. 3C and 3D).

Discussion

In 1900, Klippel and Trenaunay described the classic triad of symptoms characterizing a condition that would eventually bear their name (1). Weber, shortly thereafter, identified a number of patients who clearly had the KTWS, as well as several who had associated arteriovenous fistulas (2, 3). While some authors feel that "Parkes-
Weber syndrome" should be used to designate this latter group of patients, most agree that the Klippel-Trenaunay and Parkes-Weber syndromes are variants of the same condition (4, 6).

The KTWS appears to be a congenital angiodyplasia whose exact pathogenesis and genetic nature is unknown, although prenatal insults (trauma, infection, nutrition, etc) may play some role (4, 5, 7). Because of the wide variety of associated clinical manifestations in this disorder, including neurologic involvement, the KTWS has been classified as one of the phakomatoses (4, 5, 7). In 1973, André stated that the disorder could represent a "forme fruste of the phakomatoses in which the neural element is lacking, but the ectomesodermal components arise from an analogous teratogenic process" (8). We now know that the neural element is very much involved in patients with the KTWS. CNS abnormalities that have been described in this disorder include seizures, mental retardation, migraine headaches, electroencephalogram changes, microcephaly, macrocephaly, hemimegalencephaly, cerebral and spinal arteriovenous malformations, hemangiomas and fistulas, orbitofrontal varices, brain stem angiomias and ischemic infarcts, internal carotid artery aplasia, malformations of the circle of Willis, and optic nerve anomalies (4, 5, 9–19). The inclusion of the KTWS with the other phakomatoses is further supported by the report of multiple cases of this disorder occurring in combination with one of the other neurocutaneous syndromes (4, 5). Over 40 cases of combined KTWS and SWS have been published (4, 5, 19–21). Pietruschka (22) looked at 13 such cases and

Fig. 2. Patient 1.

A and B. Unenhanced and enhanced CT images (GE 9800) on day 2 of life demonstrate prominent, markedly enhancing choroid plexuses.

C. Coronal SE 500/20/2 MR image on same day as CT scan above. Gd-DTPA-enhanced T1-weighted image shows prominent choroid plexuses (arrowheads) that markedly enhance following Gd-DTPA administration.

D and E. CT scan at age 4 months. Note rapid progression of bilateral cerebral atrophy, extensive calcifications, prominent choroid plexus enhancement, and angiomatosus leptomeningeal enhancement (arrows).
concluded that KTWS and SWS are probably disembyroplasias that differ only in location of the lesion and in severity of involvement. One of the three patients with SWS reported by Enzmann et al also had clinical features of the KTWS (23). Unlike our cases, the head CT scan in this patient demonstrated unilateral brain involvement.

The intracranial abnormalities demonstrated on cranial CT and MR in our two patients are quite similar in appearance (Figs. 2 and 3) and consist of prominent, markedly enhancing choroid plexuses, severe cerebral atrophy, cerebral calcifications, and angiomatous leptomeningeal enhancement. Although a few cases of KTWS have been studied by cranial CT (15, 16, 18, 19) and at least one patient has undergone both CT and MR imaging (17), the constellation of findings that we report in our two cases have not been previously reported. These intracranial findings are similar to, although more extensive than those typically described in the SWS. SWS, also called encephalotrigeminal angiomatosis, is a congenital neurocutaneous syndrome characterized by facial vascular nevus and multiple intracranial abnormalities (24, 25). These include leptomeningeal angiomatosis (usually ipsilateral to the facial nevus), angiomatosis malformations of the choroid plexus, parenchymal calcifications, cerebral atrophy, buphthalmos, glaucoma, mental retardation, and seizures (24, 25). These intracranial abnormalities have been well demonstrated by cranial CT (23, 26–29) and, more recently, by MR (27–31). Within the past 2 years, the usefulness of DTPA and gradient echo imaging has been demonstrated as well (29–31).

The two cases we describe in this report clinically have the KTWS. We cannot be certain that they do not also represent examples of combined KTWS and SWS. In fact, the intracranial findings in a severe bilateral case of SWS could, conceivably, appear identical to those present in our two cases. Bilateral SWS has been reported (24–26, 28, 30, 31). This fact should not be unsettling, since there is probably a spectrum of involvement in the angiodysplasias of KTWS and SWS with considerable overlap.

References