Gd-DTPA enhancement of the cisternal portion of the oculomotor nerve on MR imaging.

A S Mark, P Blake, S W Atlas, M Ross, D Brown and M Kolsky

AJNR Am J Neuroradiol 1992, 13 (5) 1463-1470
http://www.ajnr.org/content/13/5/1463

This information is current as of October 14, 2023.
Gd-DTPA Enhancement of the Cisternal Portion of the Oculomotor Nerve on MR Imaging

Alexander S. Mark, Pamela Blake, Scott W. Atlas, Michael Ross, Douglas Brown, and Martin Kolsky

PURPOSE: To describe a radiographic finding—enhancement of the cisternal portion of the third cranial nerve on postcontrast MR—and to correlate it with patients' clinical symptoms and ultimate diagnosis. MATERIALS AND METHODS: Thirteen consecutive patients with enhancement of the cisternal portion of the third cranial nerve on postcontrast MR were retrospectively identified; 50 control patients referred for pituitary microadenomas were also retrospectively reviewed. FINDINGS: The enhancement was bilateral in six patients and unilateral in seven patients. Four of the six patients with bilateral enhancement had unilateral oculomotor nerve palsies; none had bilateral third cranial nerve palsy. Five of the seven patients with unilateral enhancement had ipsilateral third nerve palsies. Of the nine patients with third nerve palsies, the pupil was involved in four patients. Follow-up studies were available in six patients, four of whom had third nerve palsy. Resolution of the enhancement correlated with resolution of the symptoms in two patients. The patients' underlying diagnoses were lymphoma (four), leukemia (one), viral meningitis (one), neurofibromatosis (two), inflammatory polyneuropathy-HIV related (one), ophthalmoplegic migraine (one), Tolosa-Hunt syndrome (one), coccidioidomycosis (one), and diabetes (one). No enhancement was seen in any of the controls. CONCLUSION: Enhancement of the cisternal segment of the third cranial nerve is always abnormal, revealing an underlying inflammatory or neoplastic process. However, it is not always associated with clinically apparent oculomotor nerve dysfunction.

Index terms: Nerves, oculomotor (III); Contrast media, paramagnetic; Nerves, anatomy; Migraine

AJNR 13:1463-1470, Sep/Oct 1992

The clear depiction of the anatomic course of many of the cranial nerves has become routine on clinical magnetic resonance (MR) imaging. Although lesions of the cranial nerves have been identified by computed tomography (CT) (1), it is now generally recognized that the diagnostic work-up for suspected cranial nerve pathology must include MR. More recently, contrast enhancement of the second (2, 3), fifth (4), and seventh (5, 6) cranial nerves on MR has been described in patients with clinically apparent cranioneuropathies. Incidental enhancement of the seventh nerve has also been observed in asymptomatic patients (6). In this report, we describe gadopentetate dimeglumine diethylenetriamine pentaacetic acid (Gd-DTPA) enhancement of the cisternal segment of the third cranial nerve in 13 patients and correlate it with the patients' final diagnoses and clinical findings; 50 normal controls were also studied. The purpose of the paper is to answer two questions: 1) Is the enhancement of the third cranial nerve always abnormal or can it be seen in normal subjects? 2) Is the enhancement of the oculomotor nerve always associated with a clinically apparent third nerve dysfunction?
Subjects and Methods

Our study included 13 consecutive positive studies (i.e., studies that demonstrated enhancement of the cisternal segment of the third cranial nerve) collected from four institutions over a period of 3 years.

A 1.5-T system was used for imaging all patients. All patients underwent precontrast axial and/or coronal T1-weighted images and immediate postcontrast axial and/or coronal T1-weighted images (600-800/20-25/2), 3-mm thick sections with 0- to 1-mm gaps, 256 × 192–256 matrix, 20- to 22-cm field of view. All patients also underwent long TR images (2300/30-90/1), with 5-mm thick sections and 2.5-mm gap and 256 × 196 matrix. Gd-DTPA (Berlex Laboratories, Wayne, NJ) 0.1 mmol/kg was administered intravenously. The medical records of each patient were reviewed with particular attention to the neuroophthalmologic examination and to the patients’ final diagnosis. Thickening of the third cranial nerve was diagnosed when one of the nerves appeared larger on the precontrast coronal images. No specific measurements were used. Enhancement of the third cranial nerve was diagnosed when an increase in the intensity of the nerve relative to the precontrast study occurred after contrast administration. In cases of unilateral enhancement, the enhancing nerve was brighter than the contralateral one.

For comparison, 50 consecutive adult patients with normal third cranial nerve function referred for suspected pituitary adenomas in one institution (Washington Hospital Center) were evaluated with pre- and postcontrast coronal T1-weighted images using a similar technique. These images were retrospectively evaluated by two neuroradiologists (A.S.M. and D.B.) with particular attention to the morphology and enhancement characteristics of the third cranial nerve.

Results

Our results describing the patients’ age, sex, final diagnosis, presence or absence of bilateral or unilateral third cranial nerve palsy, involvement of the pupils, the presence of bilateral or unilateral enhancement, third nerve morphology, other associated symptoms, and associated MR findings, as well as the proof of diagnosis, are listed in Table 1. Of the 13 patients with third cranial nerve enhancement, six patients had bilateral enhancement (Figs. 1–3) and seven patients had unilateral enhancement (Figs. 4–8). Four of the six patients with bilateral enhancement had unilateral third cranial nerve palsy. None had bilateral third cranial nerve palsy. Five of the seven patients with unilateral enhancement had ipsilateral third cranial nerve palsies. Two patients with unilateral enhancement had neurofibromatosis and had normal third cranial nerve function. One patient had a cavernous sinus syndrome, including a third cranial nerve palsy. Of the nine patients with third cranial nerve palsies, the pupil was involved in four patients.

Unilateral thickening of the third cranial nerve was noted in four patients on a pre- and postgadolinium studies. Two patients had neurofibromatosis and a presumed schwannoma of the third cranial nerve. The other two had an inflammatory process and lymphoma, respectively, involving the third cranial nerve (patients 8 and 10). One of the patients with a thickened nerve had bilateral enhancement. The patient’s symptoms were ipsilateral to the side of oculomotor nerve enlargement.

Follow-up studies were available in six patients (four symptomatic, two asymptomatic), some of whom had interval treatment (see Table 1). In four symptomatic patients, repeat MR studies demonstrated resolution of the enhancement correlating with resolution of the symptoms in three patients (who had lymphoma, Tolosa-Hunt, and ophthalmoplegic migraine, respectively); and persistence of symptoms in one patient with idiopathic (diabetic, viral) oculomotor nerve palsy.

In the first asymptomatic patient who had leukemia, repeat MR demonstrated persistent but decreased bilateral enhancement of the oculomotor nerves following intrathecal chemotherapy. In the other asymptomatic patient who was HIV positive, the enhancement of the oculomotor nerve resolved following zidovudine (AZT, Burroughs-Wellcome Co., Research Triangle Park, NC) treatment.

No enhancement of the cisternal segment of the third cranial nerve was encountered on short TR/short TE images in any of the 50 patients referred for evaluation of pituitary microadenoma, all of whom had normal third cranial nerve function. The cisternal segment of the third cranial nerve could not be seen on the long TR images in the normal and abnormal patients because of their thickness (5 mm) and interslice gap (2.5 mm).

Discussion

The imaging of cranial neuropathies has been dramatically improved with the refinement of high resolution MR. Although morphologic alterations of the cranial nerves can sometimes be seen, many reports suggest that intravenous contrast plays an important role in the diagnosis of cranial nerve pathology (2–6). Enhancement of
TABLE 1: Summary of findings in 13 patients with enhancement of the cisternal segment of cranial nerve III

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age</th>
<th>Sex</th>
<th>Diagnosis</th>
<th>CN III Palsy</th>
<th>CN III Enhancement/Thickening</th>
<th>Other Symptoms</th>
<th>Associated MR Findings</th>
<th>Proof/Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>M</td>
<td>Viral meningitis</td>
<td>Yes, unilateral pupil spared</td>
<td>Bilateral/no</td>
<td>None</td>
<td>Meningeal enhancement</td>
<td>Lymphocytosis, negative cultures</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>F</td>
<td>Leukemia</td>
<td>No</td>
<td>Bilateral/no</td>
<td>Headaches</td>
<td>Enhancing V, VII, VIII, meningeal enhancement</td>
<td>CSF cystology +</td>
</tr>
<tr>
<td>3</td>
<td>74</td>
<td>F</td>
<td>Lymphoma</td>
<td>Yes, unilateral pupil spared</td>
<td>Unilateral/no</td>
<td>Right hemiparesis</td>
<td>Enhancing left basal ganglia mass</td>
<td>Biopsy of brain mass</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>M</td>
<td>HIV infection, lymphoma</td>
<td>Yes, unilateral pupil spared</td>
<td>Bilateral/no</td>
<td>Back pain</td>
<td>Low-intensity bone marrow on lumbar spine MR</td>
<td>Bone biopsy</td>
</tr>
<tr>
<td>5</td>
<td>39</td>
<td>M</td>
<td>Neurofibromatosis</td>
<td>No</td>
<td>Unilateral/yes</td>
<td>Bilateral sensorineural hearing loss</td>
<td>Multiple other cranial nerve neurofibromas (CN V, VIII, IX, X, XI)</td>
<td>Excised acoustic neuroma</td>
</tr>
<tr>
<td>6</td>
<td>49</td>
<td>M</td>
<td>Inflammatory polyneuropathy</td>
<td>No</td>
<td>Bilateral/no</td>
<td>Diffuse weakness</td>
<td>Enhancement of right CN V and VII</td>
<td>CSF lymphocytosis, with elevated protein and negative cultures and cytology. Enhancement resolved post-AZT</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>F</td>
<td>Ophthalmoplegic migraine</td>
<td>Yes, unilateral pupil involved</td>
<td>Unilateral/no</td>
<td>Headache</td>
<td>None</td>
<td>Clinical: similar episode 3 years ago spontaneous resolution of enhancement and symptoms</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>F</td>
<td>Tolosa-Hunt</td>
<td>Yes, unilateral pupil involved</td>
<td>Unilateral/yes</td>
<td>Headache</td>
<td>Enhancement of the posterior cavernous sinus</td>
<td>Clinical: symptoms and enhancement resolved on steroids</td>
</tr>
<tr>
<td>9</td>
<td>35</td>
<td>M</td>
<td>Neurofibromatosis</td>
<td>No</td>
<td>Unilateral/yes</td>
<td>None</td>
<td>Multiple other schwannomas</td>
<td>Clinical diagnosis</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>F</td>
<td>Lymphoma</td>
<td>Yes, unilateral pupil involved</td>
<td>Bilateral/yes</td>
<td>None</td>
<td>None</td>
<td>Enhancement resolved spontaneously. New left-sided palsy. Positive peripheral biopsy</td>
</tr>
<tr>
<td>11</td>
<td>64</td>
<td>M</td>
<td>Inflammatory diabetic</td>
<td>Yes, unilateral pupil involved</td>
<td>Bilateral/no</td>
<td>None</td>
<td>None</td>
<td>1 year later persistent symptoms resolved enhancement</td>
</tr>
<tr>
<td>12</td>
<td>56</td>
<td>M</td>
<td>Coccidiomycosis</td>
<td>Yes, unilateral pupil involved</td>
<td>Unilateral/no</td>
<td>Hemiparesis</td>
<td>Right basal ganglia infarct</td>
<td>CSF analysis</td>
</tr>
<tr>
<td>13</td>
<td>40</td>
<td>M</td>
<td>Lymphoma</td>
<td>Yes, unilateral pupil spared</td>
<td>Unilateral/no</td>
<td>Left cavernous sinus syndrome</td>
<td>Left cavernous sinus mass infiltrating orbital apex</td>
<td>Biopsy</td>
</tr>
</tbody>
</table>

Note.—CN III = third cranial nerve; CSF = cerebrospinal fluid.
Fig. 1. Patient 2; 67-year-old woman with chronic lymphocytic leukemia; no third cranial nerve palsy. Axial pre- (A) and post-gadolinium (B) T1-weighted (600/20) images demonstrate bilateral enhancement of the third nerves (arrows). Axial T1-weighted image (C) postintrathecal chemotherapy shows decreased but persistent enhancement (curved arrows).

Fig. 2. Case 4; 34-year-old man—HIV positive and lymphoma proven by bone marrow biopsy. Right third nerve palsy. Pre- (A) and postcontrast (B) contrast T1-weighted (600/20) axial images demonstrate enhancement of the third cranial nerves.

Fig. 3. Case 6; 49-year-old HIV positive man with an inflammatory polyneuropathy resulting in diffuse arm and leg weakness and a right facial weakness. No diplopia. Pre- (A) and postcontrast (B) T1-weighted (600/20) axial MR demonstrates enhancement of the third cranial nerves. Enhancement of the right seventh cranial nerve in the temporal bone was also demonstrated on the lower sections.

the second, fifth, and seventh cranial nerves on contrast-enhanced MR has been reported in patients with neuropathies of these nerves secondary to a variety of inflammatory or neoplastic processes (2-6). The enhancement has been associated with viral neuropathies, in particular herpes (4), Bell's palsy (5, 6), syphilis (7), as well as demyelinating optic neuritis and post-radiation optic neuritis (2, 3). However, we, as well as other authors (6), have occasionally encountered enhancement of the seventh cranial nerve in asymptomatic patients with no apparent underlying pathology.

Since we have not observed enhancement of the third cranial nerve in any of our controls and since all 13 patients had an underlying disease
and/or a third cranial nerve palsy, our study suggests that enhancement of the third cranial nerve is always abnormal, indicating an underlying inflammatory or neoplastic pathology.

Enhancement of the oculomotor nerve, however, is not always associated with a clinically apparent third nerve palsy. Furthermore, while resolution of the enhancement was associated with resolution of the third cranial nerve palsy in some patients, in two patients the symptoms persisted and/or recurred while the enhancement resolved (patients 10 and 11). Four of the nine patients with third cranial nerve palsy had involvement of the pupil, whereas the other five had normal pupillary function. The parasympathetic fibers travel on the superficial aspect of the oculomotor nerve in the cisternal portion and are most susceptible to extrinsic compression by extraneural masses such as posterior communicating artery aneurysms. Conversely, in 68% to 86% of cases due to infarction of the microvasculature located centrally in the nerve, the pupillary fibers are spared (8). These clinical findings are not absolute. In 3% to 5% of aneurysms, the pupil may be spared (8).

In our series, only one patient was diabetic (patient 11). The persistence of the palsy 1 year after the initial presentation is unusual since most such patients recover after several months (8). Persistence of the palsy beyond this time suggests a different cause for the third cranial nerve palsy. The low incidence of diabetic microvascular infarcts in our series may be explained by the fact that most diabetic patients with pupil-sparing third cranial nerve palsies do not undergo MR. However, we have studied three diabetic patients with acute pupil-sparing third cranial nerve palsies using a similar MR technique and did not observe any enhancement of the third cranial nerve. Thus, it is unlikely the palsy in patient 11 is diabetic in origin. Additional studies are necessary to determine the incidence of oculomotor nerve enhancement in diabetic microvascular infarct third cranial nerve palsies.

Third cranial nerve palsy in patients with AIDS has been previously reported (9, 10). The palsy may be due to an intraxial mass lesion such as parenchymal toxoplasmosis or lymphoma affecting the midbrain in the region of the third cranial nerve nucleus, or as demonstrated by patient 6, direct involvement of the third cranial nerve by HIV as suggested by the resolution of the enhancement on the post-AZT study. In patients with CNS lymphoma, the enhancement of the third cranial nerve probably reflects coating and/or infiltration of the nerve by lymphomatous cells.

The two patients with neurofibromatosis and presumed third cranial nerve schwannomas were both asymptomatic with respect to oculomotor nerve function. They both had many other schwannomas diagnosed by gadolinium-enhanced MR. Thus, it is unlikely the palsy in patient 11 is diabetic in origin. Additional studies are necessary to determine the incidence of oculomotor nerve enhancement in diabetic microvascular infarct third cranial nerve palsies.

In the past, a number of nondiabetic and nonmyasthenic patients with third cranial nerve palsies and negative arteriograms and CT scans were categorized as idiopathic, and an inflammatory or "vascular" process was suspected. These conditions are nevertheless important since the pupil is often involved, suggesting a compressive lesion (8). Our study suggests that such inflammatory processes may now be imaged by gadolinium-enhanced MR.

Ophthalmoplegic migraine is a rare cause of third cranial nerve palsy (12). Miller, in a review of 3 million admissions at Johns Hopkins Hospital, found 30 cases of isolated third cranial nerve palsy in children, two of which were diagnosed as ophthalmoplegic migraines (13). It is a diagnosis of exclusion, traditionally requiring a typical
Fig. 5. Patient 7; 7-year-old girl with severe headache, nausea, vomiting, and a right third cranial nerve palsy. Clinical diagnosis: ophthalmoplegic migraine. Precontrast parasagittal (A) T1-weighted image through the right third nerve (curved arrow). Postcontrast coronal (B), parasagittal (C), and axial (D) T1-weighted (600/20) images demonstrate enhancement of the third cranial nerve (arrows) and of the pia in the interpeduncular cistern. Follow-up coronal (E) 3 weeks later demonstrates resolution of the enhancement of the anterior aspect of the third cranial nerve (curved arrow); minimal residual enhancement of the posterior aspect of the nerve and pia in the interpeduncular cistern is still present (curved arrow) on the parasagittal image (F). A phase encoding artifact is seen just below the third cranial nerve (straight arrow). The patient’s symptoms resolved spontaneously.

Fig. 6. Case 8; 24-year-old woman with unilateral headache and third cranial nerve palsy. Coronal (A) and parasagittal (B) contrast-enhanced T1-weighted (600/20) images demonstrate enhancement of the right third cranial nerve (arrows). Follow-up study, coronal (C) 1 month later after steroid treatment demonstrates resolution of the third cranial nerve enhancement. The symptoms resolved. Clinical diagnosis: Tolosa-Hunt syndrome.
OCULOMOTOR NERVE ENHANCEMENT ON MR

Fig. 7. Case 12; 56-year-old man with right-sided third nerve palsy involving the pupil. Arteriography was negative. Axial T1-weighted image (600/20) demonstrates enhancement of the cisternal segment of the right third cranial nerve (white curved arrow). Notice the enhancement along the pia of the right temporal lobe (black curved arrow), and interpeduncular cistern (straight black arrow). Cerebrospinal fluid studies confirm the diagnosis of coccidioidomycosis.

Fig. 8. Case 9; 35-year-old man with neurofibromatosis and oculomotor nerve palsy. Axial short TR/TE (600/20) MR shows enhancing right third nerve mass (black arrows) arising from interpeduncular cistern in patient with neurofibromatosis. Also note enhancing right fourth nerve mass (white arrows) coursing around midbrain from dorsal aspect of perimesencephalic cistern.

Viral meningitis, as in patient 1, may also produce a third cranial nerve palsy. By demonstrating meningeal enhancement, MR suggested the correct diagnosis, differentiating this condition from other inflammatory processes affecting the oculomotor nerve primarily.

From our observations, it is apparent that the role of MR in the evaluation of patients with third nerve palsies is rapidly evolving. As with any other cranial neuropathy, when imaging these patients it is important to evaluate the entire course of the nerve from its nucleus through the cisternal portion, cavernous sinus, and to the orbital apex. MR is uniquely suited for this task (18). The most serious potential cause for a third nerve palsy is an aneurysm originating from the origin of the posterior communicating artery. At the present time, the sensitivity of MR angiography for the detection of these aneurysms is not known. Because of the potentially devastating consequence of missing such an aneurysm, we believe that in a patient with a third cranial nerve palsy involving the pupil, arteriography is the initial modality of choice to exclude an aneurysm. This approach may change if MR angiography proves itself a reliable diagnostic tool for aneurysm detection. If an aneurysm is excluded in a patient with pupillary involving oculomotor palsy, MR with contrast should be the next imaging
Likewise, in patients with pupillary-sparing third cranial nerve palsy who are neither diabetic nor myasthenic, MR with contrast may be extremely useful in detecting neoplastic or inflammatory processes in the oculomotor nerve and direct further investigation.

Acknowledgments

We would like to thank Lori Baker, MD, Robert Tash, MD, and Charles Fitz, MD, for providing a case each, and Nancy Carnes for editorial assistance.

References

8. Trobe JD. Isolated third nerve palsies. Semin Neurol 1996;6;135-141