Herpes zoster ophthalmicus with orbital pseudotumor syndrome complicated by optic nerve infarction and cerebral granulomatous angiitis: MR-pathologic correlation.

F J Lexa, S L Galetta, D M Yousem, M Farber, J C Oberholtzer and S W Atlas

$AJNR$ Am J Neuroradiol 1993, 14 (1) 185-190
http://www.ajnr.org/content/14/1/185
Herpes Zoster Ophthalmicus with Orbital Pseudotumor Syndrome Complicated by Optic Nerve Infarction and Cerebral Granulomatous Angiitis: MR-Pathologic Correlation

Frank J. Lexa,1 Steven L. Galetta,2 David M. Yousem,1 Martha Farber,3 J. Carl Oberholtzer,4 and Scott W. Atlas1

Summary: The authors describe a 41-year-old woman with herpes zoster ophthalmicus and an orbital pseudotumor syndrome manifesting as right eye proptosis, ophthalmoplegia, and optic nerve dysfunction. Magnetic resonance (MR) imaging demonstrated extensive inflammation of the orbital structures with enhancement of the right optic nerve sheath complex as well as intrinsic enhancement of the right optic nerve head suggesting acute infarction. Although subsequent MR showed resolution of the orbital inflammation, abnormal parenchymal signal was seen in the pons and right hemispheric white matter with abnormal meningeal enhancement. Necropsy examination confirmed pontine and optic nerve infarctions as well as granulomatous angiitis of the leptomeningeal arteries. We conclude that MR is useful in both detection and monitoring of the disease.

Index terms: Orbits, magnetic resonance; Vasculitis; Nerves, optic (II)

We describe a patient with herpes zoster ophthalmicus and an orbital pseudotumor syndrome manifesting as right eye proptosis, ophthalmoplegia, and optic nerve dysfunction. Magnetic resonance (MR) imaging demonstrated extensive inflammation of the orbital structures with enhancement of the right optic nerve sheath complex as well as intrinsic enhancement of the right optic nerve head suggesting acute infarction. Although subsequent MR showed resolution of the orbital inflammation, abnormal parenchymal signal was seen in the pons and right hemispheric white matter with abnormal meningeal enhancement. Necropsy examination confirmed pontine and optic nerve infarctions as well as granulomatous angiitis of the leptomeningeal arteries. We conclude that MR is useful for identifying the wide array of inflammatory and ischemic complications associated with herpes zoster ophthalmicus. Serial MR may document both the regression and progression of various aspects of this unusual disorder.

Case Report

A 41-year-old white woman with a 4-year history of scleroderma, treated previously with D-penicillamine and plasmapheresis, presented at another hospital with right periorbital pain of 5 days' duration. Seven days after the onset of her pain, a right perinasal vesicular rash consistent with herpes zoster appeared (Fig. 1). Oral and topical steroid treatments were begun with incomplete pain relief. Twelve days after the onset of her symptoms, she was discharged. The next day, while applying her eye drops, she noted complete loss of vision in the right eye. Computed tomography (CT) of the head demonstrated an inflammatory mass involving the right globe and retrobulbar tissues. Intravenous acyclovir was begun, but the patient rapidly became encephalopathic and was transferred to this institution.

Initial examination revealed a right eye acuity of no light perception and 20/30+2 acuity on the left. The right eye was chemotic with 3–4 mm of proptosis with complete ophthalmoplegia. The right pupil was dilated and unreactive to direct and consensual stimulation. Ocular motility on the left was full with normal pupil reactivity. There were 2–3+ cells in the right anterior chamber. Fundoscopy was remarkable only for cotton wool spots in both eyes. Initial lumbar puncture demonstrated: white blood cells, 13 cells/mm3 (differential: polymorphonuclear cells, 31; lymphocytes, 63; and monocytes, 6); red blood cells, 10 cells/mm3; protein, 68 mg/dl; and glucose, 48 mg/dl (simultaneous serum glucose 80 mg/dl).

Initial imaging evaluation included a 1.5-T MR study (Signa, General Electric Medical Systems, Milwaukee, WI). Images through the head were obtained using spin-echo technique with short TR/short TE (T1-weighted), long TR/short TE (proton density-weighted) and long TR/long TE (T2-weighted). Images were also obtained in the axial and coronal planes after intravenous injection of paramagnetic contrast (0.1 mL/kg, gadolinium-DTPA, Berlex, NJ). High-resolution pre- and postenhancement coronal and axial T1-weighted images were obtained through the orbits using a surface coil. The orbital images demonstrated uveal-scleral thickening of the right globe, ill-defined soft tissue throughout the right pre- and postseptal soft tissues, and right rectus muscle and tendon enlargement. The optic nerve...
sheath complex showed abnormal peripheral enhancement, particularly prominent about the nerve head, with slight enhancement within the nerve head itself (Figs. 2A and 2B). There was also abnormal intracranial meningeal enhancement (Fig. 3) as well as an area of high signal in the rostral right pons at the level of the fifth nerve nucleus (Fig. 4).

On intravenous acyclovir (6 mg/kg/day) the chemosis and proptosis slowly resolved but the patient became progressively more encephalopathic and then comatose with Cheyne-Stokes respirations. The left leg became flexed and externally rotated with loss of withdrawal to noxious stimuli on the left. Repeat cerebrospinal fluid (CSF) analysis revealed: white blood cells, 62 cells/mm³ (91% lymphocytes); red blood cells, 3 cells/mm³; glucose, 57 mg/dL; and protein of 148 mg/dL. Hepatitis and human immunodeficiency virus screens were negative. CSF-VDR serology was not reactive. CSF cytologic and microbiologic examinations were negative. Eleven days into this admission, repeat CT and MR showed improvement in the orbital inflammation, but new right hemispheric swelling and sulcal effacement. There was abnormal falxine and tentorial enhancement as well as new abnormal high signal intensity in the left pons. Intravenous corticosteroids were added to the acyclovir regimen. In the final 2 days of life her mental status had improved and she was able to follow simple commands. The patient's course, however, was complicated by pneumonia, sepsis, gastrointestinal bleeding, and pulmonary hemorrhage, the latter probably related to a uremic platelet syndrome. Four weeks after the onset of her symptoms, the patient died of a massive pulmonary hemorrhage.

Pathologic Examination

At necropsy there was herpetic dermatitis in the distribution of the first division of the right trigeminal nerve. The gross neuropathologic examination disclosed small bilateral subdural hematomas that were felt to be incidental. Despite a normal appearance on gross inspection, microscopic examination of the leptomeninges showed granulomatous angitis. Inflammatory infiltrate, consisting of epithelioid histiocytes, lymphocytes, and occasional plasma cells predominately involved the adventitia of blood vessels (Fig. 5A). There was segmental vasculitic involvement of the large arteries of the anterior circulation as well as of the distal middle cerebral arteries bilaterally. No intraparenchymal angitic involvement was found. Viral inclusion bodies were not seen on light microscopy and specific antisera stains for varicella-zoster were negative. No evi-
Evidence of encephalitis or cerebritis was found. A microscopic intraparenchymal hemorrhage in the frontal cortex was seen with questionable lymphocytic infiltration of an overlying leptomeningeal vessel. Several scattered areas of subacute infarction were identified in the pons (Fig. 5B) and medulla, corresponding to the areas seen on MR.

The ophthalmic histopathologic examination also corresponded well to the MR findings, demonstrating a periaxial infarction of the right optic nerve and chronic inflammation in the right uveal tract and vitreous (Fig. 6). A retinal perivasculitis was also demonstrated. In the left retina, a small microinfarct of the nerve fiber layer was
seen. All fungal, viral, and bacterial cultures of the pathologic material were negative.

Discussion

The varicella-zoster virus is a double-stranded DNA virus weighing 80–100 × 10⁶ daltons, with an enveloped icosahedral capsid measuring 200 nanometers (1). In temperate climates, primary infections—varicella or "chicken pox"—tend to occur in childhood during the spring, with 3 million cases a year in the United States (2). Seropositivity approaches 100% by age 60 in the native-born population of the United States (3, 4). Zoster eruptions are generally believed to represent a recrudescence of latent virus in sensory ganglia (5). In about 10% of herpes zoster cases the ophthalmic division of the trigeminal nerve is involved (6, 7). These patients are more likely to be elderly (7, 8) or immunosuppressed from a variety of etiologies including the acquired immunodeficiency syndrome (8–14).

The most commonly reported complication of herpes zoster is postherpetic neuralgia (7, 15, 16). However, ocular involvement is documented in 20%–71% of cases of herpes zoster ophthalmicus (6, 7, 16) and includes: keratoconjunctivitis (6, 16), ocular motor palsies (17–20), acute retinal necrosis (21–24), acute phthisis bulbi (20, 25), optic neuritis (26), and central retinal artery occlusion (27, 28).

Central nervous system (CNS) complications of herpes zoster may include an encephalitis, commonly observed in elderly or immunocompromised patients with disseminated lesions (1, 29–31). A more intriguing complication is the delayed contralateral hemiplegia that may occur without clinical evidence of encephalitis (usually about 1 month, but possibly up to 2 years, after the initial infection) (19, 32–34). This entity was first described by Baudoin (35) and is believed to result from granulomatous angiitis of the carotid system ipsilateral to the skin lesion. Concurrent varicella-zoster virus encephalitis and granulomatous angiitis has been reported (36) and a spectrum of manifestations between the two has been proposed (37).

Granulomatous arteritis is a form of vasculitis characterized by a mixed infiltrate of histiocytes, mononuclear cells, lymphocytes, and multinucleated giant cells (38). This vasculitic process is the likely cause of cerebral infarction observed in patients with the herpes zoster ophthalmicus-contralateral hemiplegia syndrome (39–45). Necrotizing angiitis without granulomatous features has also been described (46, 47). Granulomatous angiitis of the CNS however, is not specific for varicella-zoster and can be seen in association with a variety of pathologic entities including Hodgkin disease, sarcoid, systemic lupus erythematosus, and giant cell (temporal) arteritis (48, 49).

The typical features of herpes zoster ophthalmicus associated granulomatous angiitis on angiography include segmental proximal narrowing of the intracranial internal carotid, the large arteries at the base of the brain, and the proximal portions of the middle (first 2 cm) and anterior (first 3 cm) cerebral arteries (40, 42, 46, 50, 51). Rarely, mycotic aneurysm formation may be observed (52). Granulomatous angiitis infarcts tend to be bland but they also may be hemorrhagic (53–57) and have been seen in both adults and children (58). Although clinical and angiographic features usually support involvement of the carotid branches ipsilateral to the involved cranial nerve, a more diffuse form with bilateral disease has been reported (45, 59).

On CT, herpes zoster ophthalmicus-related cerebral ischemia is typically associated with ipsilateral infarcts in the distribution of the middle cerebral artery (44, 45, 60, 61). However, bilateral involvement as well as a single case of contralateral-only infarction have been reported (37). In addition, infarcts of the posterior circulation have been reported with trigeminal herpetic infections. This has been ascribed to dissemination from the gasserian ganglion (62) or to anatomic variants with trigeminal supply to the posterior circulation branches (63, 64). A single previous report of MR in varicella-zoster demonstrated an infarction on long TR/long TE (T2-weighted) sequences, but gadolinium was not administered (62).

In 1976, Reyes et al first documented intranuclear virus-like particles in glial cells of a patient with granulomatous angiitis (66). Spread of the virus into the CNS may occur by more than one mechanism. Direct dissemination of varicella-zoster virus along nerve pathways was first postulated by Cope and Jones in 1954 (67). Intranuclear (68) and transsynaptic (69) spread has been well documented in humans and in animal models (70). The ophthalmic nerve gives branches which supply sensation to the internal carotid artery and its proximal ramifications. Mackenzie et al postulated that these branches allow viral particles to first spread to the adventitia of vessels with general dissemination occurring via the subarachnoid space (46). Supportive
Evidence for this theory includes work by Linne-
mann et al and Doyle et al who demonstrated herpes-like virions in smooth muscle cells of the
outer layers of affected arteries with sparing of the
endothelium (51, 71).

This case provides evidence for several types of viral involvement, including spread into the pons at the level of the gasserian
ganglion and cerebral infarction from granuloma-

tous angiitis. The lesion in the right pons noted
on MR is consistent with direct inflammatory
involvement of the central pathways of the right
fifth cranial nerve. Diffuse inflammation through­
out the meninges and subarachnoid vessels sup­
ports the theory that the virus can disseminate
diffusely throughout the CSF either directly from
the level of the gasserian ganglion or possibly
from neural pathways to proximal intracranial

This case is instructive for several reasons. The
association of herpes zoster ophthalmicus with
orbital pseudotumor syndrome has been reported
(17, 20), but is rare. Despite therapy there was
rapid progression to encephalopathy and coma
consistent with diffuse CNS involvement. MR at
the height of ocular and CNS involvement was
able to demonstrate all of the lesions that were
later confirmed at necropsy, including the orbital
inflammation that led to her ophthalmoplegia and
pseudotumor syndrome, the periaxial infarct of
the distal optic nerve, the pontine infarcts, as well
as the granulomatous angiitis of the meningeal
vessels which was manifest as abnormal menin­
geal enhancement. Moreover, we were able to
follow the regression of the orbital inflammation
in response to treatment as well as the develop­
ment of new lesions in the left pons. MR appears

References

1. Barnes DW, Whitley RJ. CNS diseases associated with varicella zoster

virus and herpes simplex virus infection: pathogenesis and current

2. Liegang TJ. Diagnosis and therapy of herpes zoster ophthalmic.

3. Gershon AA, Steinberg SP. Antibody responses to varicella-zoster

virus and the role of antibody in host defense. Am J Med Sci

1981;12:282–287 (as cited in Weller, ref. 4)

4. Weller TH. Varicella and herpes zoster changing concepts of the

natural history, control, and importance of a not-so-benign virus.

5. Weller TH. Varicella and herpes zoster changing concepts of the

natural history, control, and importance of a not-so-benign virus.

52. O'Donohue JM, Enzmann DR. Myotic aneurysm in angitis associated with herpes zoster ophthalmicus. *AJNR* 1987;8:615–619
64. Mayberg MR, Zervas NT, Moskowitz MA. Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry. *J Comp Neurol* 1984;228:46–56