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Commentary 

The Relation between Regional Brain Iron and T2 Shortening 

J. M. Gomori1 and R. I. Grossman2 

Thomas et al attempt to quantitate, using in 
vitro and in vivo studies, the relationship between 
regional brain iron and T2 shortening (1). The 
paper reconfirms two well-known facts: 1) iron 
concentration of the deep gray-matter nuclei in­
creases during the first 3 decades of life (2-9); 2) 
T2 of brain tissue decreases rapidly during the 
first 2 years of life (10). The paper does not 
identify nor measure the concentration of the 
different forms of iron that actually contribute to 
the total brain iron. Furthermore, the exact con­
tribution of iron versus all other mechanisms 
contributing to the T2 of the deep gray-matter 
nuclei are not separated and measured. 

There are some problems with the use of ferric 
and ferrous ammonium solutions as models for 
brain iron. These solutions also shorten T1 almost 
as much as T2. This is not what occurs in vivo 
where there is preferential shortening of T2 ( 11-
14). The T2 of these solutions is not sensitive to 
field strength unlike the T2 of the gray-matter 
nuclei (13) (unpublished measurements of 1/T2 
at 0.5 and 2 .0 T, Gomori et al, see below). Lastly, 
these solutions do not exhibit T2* (susceptibility 
heterogeneity effects), unlike the gray matter 
nuclei that become relatively more hypointense 
on long echo time gradient-echo images (14). 
Thus, the modeling the authors have chosen does 
not closely follow the clinical observations of 
preferential T2 shortening. 

Because of these problems this study does not 
refute the recent conclusion by Chen et al that 
iron content is not the dominant moderator of 
brain T2 (15). However, we believe that the Chen 
paper is flawed by the use of 2.5-msec interecho 
intervals. This has been shown to significantly 
decrease the T2 shortening effect of hemosider­
otic deposits (16, 17). Their technique may be 
responsible for Chen et al 's observed lack of 
correlation between T2 and elevated brain iron 
content. 

TABLE 1: 1/T2 (sec- 1
) in a 37-year-old patient at 0.5 T and 2.0 T 

0.5 T 2.0 T 

Genu corpus ca llosum 13.4 ± 1.5 14.2 ± 2.0 

Fron tal white matter 13.5 ± 1.2 12.9 ± 1.2 

Caudate 11.5±0.7 12.4 ± 1.1 

Basal ganglia 11.1 ± 0.9 17.8±1.4 

Posterior thalamus 8.7 ± 0.7 6.5 ± 0.9 

On the basis of the finding of increasing iron 
concentration in the deep gray matter over the 
first 3 decades of life and the known field­
strength-dependent preferential T2 and T2* 
shortening of hemosiderin and ferritiA, it can be 
concluded that iron content contributes to the T2 
relaxation of the deep gray-matter nuclei. 

Gomori et al measured the 1/T2 (sec- 1
) relax­

ation rates of brain structures in a 37-year-old 
volunteer at 0.5 T and 2.0 T (Gyrex, Elscint Ltd.) 
using a 4-echo sequence ending at an echo time 
of 140 msec. The results are shown in Table 1. 
These preliminary measurements indicate that 
the field-strength-dependent contribution to a T2 
relaxation rate of the adult basal ganglia is at 
least 40% because of field-dependent suscepti­
bility-related mechanisms. 

We agree with the conclusion of Thomas et al 
that brain iron appears to contribute to the de­
creased T2 signal seen in the deep gray-matter 
nuclei, although their experiment as published 
does not directly support this hypothesis. 
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