Diagnosing intracranial vasculitis: the roles of MR and angiography.

K G Harris, D D Tran, W J Sickels, S H Cornell and W T Yuh

http://www.ajnr.org/content/15/2/317

This information is current as of August 23, 2024.
Diagnosing Intracranial Vasculitis: The Roles of MR and Angiography

Kurt G. Harris, Duc D. Tran, William J. Sickels, Steven H. Cornell, and William T. C. Yuh

PURPOSE: To describe our experience with MR and angiography in diagnosing intracranial vasculitis and to test the hypothesis that MR can be used to screen for patients unlikely to have vasculitis. METHODS: Ninety-two patients who had angiography with "exclude vasculitis" as the indication or who had angiography and a clinical diagnosis of vasculitis were identified. Angiograms of all 92 patients and the MRs of the 70 patients who had both studies were reviewed. RESULTS: Eleven patients had intracranial vasculitis. Angiography showed characteristic changes in 8. MR, performed in 9 of 11 vasculitis cases, was significantly abnormal in all 9. Among 70 patients who had both studies, 19 had MR that was completely normal or showed only incidental findings. None of these 19 was diagnosed with vasculitis. The diagnostic yield of angiography performed to exclude vasculitis was only 6%. CONCLUSIONS: Evaluation for intracranial vasculitis should include MR. A negative MR excludes intracranial vasculitis more definitively than does a negative angiogram and makes the likelihood of finding vasculitis with angiography negligible.

Index terms: Vasculitis; Angiography, comparative studies; Magnetic resonance, indications


Intracranial vasculitis is a group of disorders resulting in intracranial vascular inflammation. Most of these are thought to be immune-mediated, either by immune complex deposition or cellular mechanisms (1–3). Diagnosis is difficult, yet critical, particularly for primary angiitis of the central nervous system (PACNS), which has nonspecific and protean manifestations and a poor prognosis if left untreated (4). Angiography and brain biopsy have been the mainstays of diagnosis, but both have limitations. Angiography may have a false-negative rate of 20% to 30% because vessels of a size beyond its limit of resolution may be involved (4). In addition, several entities can mimic the appearance of vasculitis on angiography, particularly intracranial atherosclerosis and vasospasm (5, 6). Brain and leptomeningeal biopsy may be diagnostic in only 50% to 72% of PACNS cases because of segmental involvement by the disease and consequent sampling error (4, 7). Furthermore, the risk of serious morbidity from brain biopsy has been estimated at 0.5% to 2% (8). The morbidity associated with biopsy and the limitations, risk, and expense of angiography would make a screening diagnostic examination highly desirable. If such a test were of sufficient sensitivity, regardless of specificity, patients with symptoms and signs suggestive of vasculitis but without the disease could be separated from those needing further evaluation.

The complications of vasculitis consist of ischemia caused by luminal compromise and hemorrhage caused by vessel rupture. Although ischemia and hemorrhage are not specific for vasculitis, in our limited experience, magnetic resonance imaging (MR) has proved sensitive to the presence of these parenchymal effects regardless of the size of vessels involved by the vasculitic process. Also, in a recent report, all seven of a group of patients with PACNS and angiograms positive for vasculitis also had positive MR findings (9). Based on these observations, we hypothesized that patients lacking significant findings on MR are unlikely to manifest changes of vasculitis on angiography and that these patients are unlikely to have intracranial vasculitis.
Materials and Methods

Review of consecutive angiographic records from a 77-month period was undertaken to identify patients who had undergone cerebral angiography to evaluate for intracranial vasculitis. Eighty-three patients were identified who had "exclude vasculitis" as the indication listed on the angiography requisition. The majority (70%) of these 83 were patients referred from the neurology service who had symptoms or signs of cerebral ischemia, and in whom the etiology was not clear. Approximately 20% had only nonspecific neurologic symptoms such as headache or mental changes, and approximately 10% had new-onset seizures. An additional 9 patients who had angiograms for another indication (most commonly to "exclude vascular malformation" in the setting of intraparenchymal hemorrhage) but with angiographic findings of vasculitis or a known clinical diagnosis of vasculitis were also included in the analysis, for a total of 92 patients.

Seventy of 92 patients had MR of the brain in the course of their evaluation. MR was performed on either a 1.5-T or a 0.5-T superconducting magnet. MR included parasagittal T1- and axial T2-weighted spin-echo images in all cases. Images obtained with the 1.5-T machine included axial proton-density (long repetition time, short echo time) spin-echo images as well. In addition, either coronal T2-weighted or pre- and postgadolinium chelate (gadopentetate dimeglumine) T1-weighted images in the axial and coronal planes were obtained for each patient, depending upon the indication.

Angiograms of all patients and MR images of the 70 patients with both studies were retrospectively evaluated independently by two neuroradiologists blinded to the original interpretations, clinical histories (except age), and findings on other imaging studies. Reviewers were asked to categorize each study according to the scheme outlined in Table 1 into normal, incidental, and abnormal categories. For MR, nonspecific hyperintense foci were within the subcortical or periventricular white matter or the deep gray matter on T2-weighted images. To err on the side of increased sensitivity, and because larger nonspecific hyperintense foci are more likely to represent frank small vessel infarction (10), nonspecific hyperintense foci were considered incidental only if less than 3 mm in size in a patient age 55 years or older. Similarly, mild diffuse brain atrophy was considered incidental in patients over 55 years of age. Any other intracranial abnormality was considered "abnormal." Abnormal findings included, but were not limited to, hyperintense white matter foci 3 mm or larger, parenchymal changes consistent with ischemia or infarction, intracranial hemorrhage, and if paramagnetic contrast was administered, any abnormal vascular, parenchymal, or meningeal enhancement.

For angiography, the classic vasculitis pattern was defined as long segmental or multiple focal areas of significant narrowing in at least two separate vascular distributions (eg, middle, posterior, and anterior cerebral artery) (Figs 1 to 4). Avascular mass, vascular occlusion, aneurysm, or extracranial atherosclerotic occlusions or stenoses greater than 50% in diameter were considered abnormal. Discordance between reviewers or between the original interpretations and the two reviewers was resolved by consensus with a third neuroradiologist.

Clinical records of all 92 patients were reviewed to correlate treatments and outcomes with the imaging studies and to identify patients with a clinical diagnosis (opinion documented in writing by a nonradiologist) of intracranial vasculitis. To make the analysis more meaningful, patients with clinical diagnoses of vasculitis were then further categorized according to a scheme modified from a system of classification described by Fauci et al (3) (Table 2). This scheme was constructed from the viewpoint of a neuroimaging specialist,
yet incorporates clinical differences based on pathogenesis and treatment response. The categories are ranked 1 through 4 in descending order of a priori likelihood and significance to neurodiagnosis. PACNS is most likely simply because by definition it is confined to the central nervous system (CNS). Even though systemic angiitis with CNS involvement might be more common pathologically, it should be less common in the neurodiagnostic setting because systemic vasculitides involve other organ systems (category 2). This would tend to obviate the necessity for neuroradiologic evaluation. Similarly, angiitis of the CNS secondary to primary CNS disease (category 4) is less likely than PACNS to occur in the context of "exclude vasculitis" because the primary process (eg, meningitis) is usually of most concern and is usually manifest apart from any secondary vasculitic involvement. The same is true of category 3, which would include entities described by Fauci et al (3) as hypersensitivity vasculitis (eg, vasculitis associated with collagen vascular disease). An indeterminate vasculopathy category (category 5) was included so that entities that have not been proved to be true inflammatory vasculitis (eg, illicit drug-induced vasculopathy [11]) yet that might warrant angiographic evaluation would not be missed if a negative MR was accepted as evidence of absence of disease.

For the purpose of describing MR and angiographic findings in vasculitis, patients in categories 1 to 4 were considered to have "true" vasculitis. This required a final clinical diagnosis of vasculitis as well as at least one of the follow-
Fig. 2. Patient 1: PACNS. Patient was a 49-year-old man with headache, nausea, and extremity numbness. 

A,B, Axial T2-weighted MR images show multiple foci of hyperintensity in the periventricular and deep white matter and at the corticomedullary junction (arrows).

Lateral projections from right and left internal carotid (C, D) and left vertebral (E) arteriograms show multiple focal areas of arterial narrowing (arrows).

...ing: 1) pathologic evidence, 2) classic vasculitis pattern on angiogram, or 3) clinical course (such as the progression from headache to encephalopathy to focal neurologic deficits common with PACNS) and response to therapy consistent with vasculitis (1). Patients who were clinically diagnosed as having vasculitis without belonging to categories 1 to 4 or who met none of the three supporting criteria were deemed to have "indeterminate vasculopathy" (category 5).

To test our hypothesis about screening with MR, all 5 categories were used to be as inclusive as possible regarding the definition of intracranial vasculitis. Therefore, our hypothesis was not limited to testing whether a negative MR excludes PACNS but rather any type of intracranial vasculitis, whether confirmed or only putative.

Results

MR–Angiography Correlation

The median interval between MR and angiography was 4 days (range, 0 to 31 days). MR was performed before the angiogram in 84% of cases. In reviewing the MRs, there were minor differences between the two reviewers in total lesions detected and so forth, but there was no discordance between reviewers regarding the major category into which each study result was placed (Table 1). Similarly, there was no discordance between the reviewers and the original MR interpretations.

There were four angiograms in which the reading by both reviewers differed from the original interpretation, but the reviewers were concordant...
Fig. 3. Patient 8: Systemic vasculitis. This 68-year-old man had headache, myalgia, and gait disturbance.
A, Axial T1-weighted MR image shows hyperintense right thalamic hemorrhage.
B, Lateral projection from right internal carotid arteriogram shows narrowing of anterior cerebral artery (arrows).
C, Anteroposterior projection from left vertebral arteriogram shows narrowing and attenuation of both posterior cerebral arteries (arrows).

with each other. Three patients were originally interpreted as "consistent with vasculitis," but not by the two reviewers. Two of these showed apparent smooth vascular narrowing in a single vessel on a single projection, interpreted as flow artifact by the reviewers. One had occlusive changes in a middle cerebral artery branch.

One patient with CNS lupus and progressive neurologic symptoms had a study originally read as abnormal but the diagnosis of vasculitis was not suggested. Upon review this was believed to show findings of vasculitis. This was the only patient with discordant readings who had a clinical course consistent with vasculitis (see Table 3, patient 10).

Fifty-one patients had abnormal MRs. Nineteen patients had MRs categorized as normal or incidental. Fourteen of these were completely normal. Five were patients placed in the incidental category. These included 2 over age 55 with nonspecific hyperintense foci, 1 with a pineal cyst, 1 with an intracerebral lesion, and 1 with mild diffuse atrophy. None of these 19 patients had abnormal angiograms (Table 4).

Thirty-three of the 70 patients with MR had T1-weighted images after enhancement with paramagnetic contrast. Nine of these 33 had abnormal enhancement. Four of the nine had clinical diagnoses of vasculitis and their findings are summarized in the text below and in Table 3. The remainder consisted of 2 patients with meningeal enhancement who were ultimately diagnosed with meningitis, 2 patients with parenchymal enhancement consistent with subacute infarction, and 1 with multiple focal areas of enhancement which proved to be brain metastases.

Clinical Outcome: 19 Patients With Normal or Incidental MR

The clinical records of all patients were reviewed. Among the 19 patients with normal or incidental MR, records of clinical follow-up were available ranging from 2 days to 65 months from the date of the MR, with a median interval of 4 months. None of the 19 patients with normal or incidental MR had findings of vasculitis or any significant abnormality on angiography. Eight had no subsequent change in neurologic status and 9 either improved or had resolution of their neurologic symptoms. One patient deteriorated because of AIDS-related lymphoma. Another patient with encephalopathy of indeterminate cause died as a complication of brain and leptomeningeal biopsy to rule out vasculitis (with negative MR, angiogram, biopsy, and autopsy results). None of these patients was ultimately diagnosed with intracranial vasculitis of any type, including the indeterminate vasculopathy category. Table 5 summarizes the ultimate diagnoses, as best as could be determined, for these 19 patients.
TABLE 2: Classification of vasculitis

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PACNS—primary angiitis of the central nervous system (CNS)</td>
<td>Primary systemic angiitis with CNS involvement (e.g., polyarteritis nodosa, giant cell)</td>
</tr>
<tr>
<td>2. Angitis of CNS secondary to systemic disease (e.g., collagen vascular disease)</td>
<td></td>
</tr>
<tr>
<td>3. Angitis of CNS secondary to primary CNS disease (e.g., meningitis)</td>
<td></td>
</tr>
<tr>
<td>4. Indeterminate vasculopathy</td>
<td></td>
</tr>
</tbody>
</table>

Patients with Vasculitis

Nineteen patients had a clinical diagnosis of some type of vasculitis. Patient information is summarized in Table 3. Eleven patients met the stricter criteria for true vasculitis (categories 1 to 4, Table 2). Five of these 11 had pathologic evidence of vasculitis. There were 7 cases of PACNS and 2 cases of a primary systemic angiitis involving the CNS (one possibly temporal arteritis). There were 2 cases of CNS angiitis secondary to systemic disease (category 3). One of these was a patient with systemic lupus erythematosus who had an angiographic pattern of vasculitis and whose CNS symptoms improved dramatically with an increase in her steroid dosage (patient 10, Fig 4). The second patient (patient 11) had evidence of connective tissue disease on a skin biopsy and an appearance of classic vasculitis in both carotid distributions. Her symptoms improved dramatically with administration of steroids and cyclophosphamide.

There were no patients with vasculitis secondary to a primary CNS disease (CNS infection, granulomatous disease, etc).

Eight patients had a clinical diagnosis of some type of vasculitis but met none of the three supportive criteria. Three of these were considered "drug-induced" vasculitis. Only one patient in the indeterminate category (patient 19) had a...
TABLE 3: Summary of patients with intracranial vasculitis (clinical diagnosis)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age, Sex</th>
<th>Clinical Presentation</th>
<th>MR Findings</th>
<th>G</th>
<th>Angiogram Indic</th>
<th>Study</th>
<th>Angiogram Findings</th>
<th>Final Diagnosis</th>
<th>Pathology</th>
<th>Biopsy Site</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. PACNS</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>49, M</td>
<td>Headache, vertigo, nausea, vomiting, extremity numbness</td>
<td>CMJ and deep white matter hyperintensities on T2WI</td>
<td>nl</td>
<td>Rule out stenosis</td>
<td>3V</td>
<td>Classic vasculitis PACNS</td>
<td>NA</td>
<td>NA</td>
<td>s,c</td>
<td>Resolved</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>52, F</td>
<td>Headache</td>
<td>Right frontal parenchymal hematoma, leptomeningeal enhancement in right middle cerebral artery territory</td>
<td>ab</td>
<td>Rule out vascular</td>
<td>3V</td>
<td>Classic vasculitis PACNS</td>
<td>NA</td>
<td>NA</td>
<td>s,c</td>
<td>Improved</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>28, F</td>
<td>Headache, left hemiparesis, postpartum</td>
<td>Large enhancing lesion in pons hyperintense on T2WI</td>
<td>ab</td>
<td>Rule out tumor</td>
<td>3V</td>
<td>Classic vasculitis PACNS</td>
<td>NA</td>
<td>NA</td>
<td>s,c</td>
<td>Improved</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>35, F</td>
<td>Headache, right hemiparesis, expressive aphasia</td>
<td>Left frontal 5 cm parenchymal hemorrhage</td>
<td>nl</td>
<td>Rule out VM</td>
<td>3V</td>
<td>Classic vasculitis PACNS</td>
<td>Infarct with glial reaction</td>
<td>Left frontal brain</td>
<td>s,c</td>
<td>Improved</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>50, F</td>
<td>Headache, nausea, vomiting</td>
<td>NA (CT showed infarct with hemorrhagic transformation)</td>
<td>NA</td>
<td>Rule out vascular</td>
<td>3V</td>
<td>Classic vasculitis PACNS</td>
<td>Normal</td>
<td>Right frontal brain, meninges</td>
<td>s,c</td>
<td>Improved</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>58, F</td>
<td>Right hemiparesis and myalgia</td>
<td>Parenchymal hemorrhage in left frontal and left temporal regions</td>
<td>nl</td>
<td>Rule out VM</td>
<td>Left internal carotid artery, VA</td>
<td>Mass effect from hemorrhage, no vasculitis</td>
<td>PACNS</td>
<td>Left temporal brain</td>
<td>s,c</td>
<td>IF</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>70, F</td>
<td>Headache, malaise, mental status changes, gait disturbance</td>
<td>Confuent perivenricular white matter hyperintensities on T2WI, hypointense on T1WI profound diffuse meningeal enhancement with Gd</td>
<td>ab</td>
<td>Rule out VM, aneurysm</td>
<td>3V</td>
<td>Normal</td>
<td>PACNS</td>
<td>Invasion of meningeal arteries and vessels by histiocytes</td>
<td>Brain, meninges</td>
<td>s,c</td>
<td>Improved</td>
</tr>
<tr>
<td>II. Primary systemic vasculitis with CNS involvement</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>68, M</td>
<td>Headache, mental status change, myalgia, unsteady gait</td>
<td>Right thalamic hemorrhage</td>
<td>nl</td>
<td>Rule out vascular</td>
<td>3V</td>
<td>Classic vasculitis PACNS</td>
<td>Systemic vasculitis</td>
<td>Necrotizing vasculitis</td>
<td>Left temporal artery</td>
<td>s,c</td>
<td>Resolved</td>
</tr>
<tr>
<td>Patient</td>
<td>Age, Sex</td>
<td>Clinical Presentation</td>
<td>MR Findings</td>
<td>G</td>
<td>Angiogram Indic</td>
<td>Study</td>
<td>Angiogram Findings</td>
<td>Final Diagnosis</td>
<td>Pathology</td>
<td>Biopsy Site</td>
<td>Treatment</td>
<td>Outcome</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>---</td>
<td>----------------</td>
<td>-------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>9</td>
<td>78, M</td>
<td>Headache, diplopia</td>
<td>Focal CMJ and central white matter hyperintensities on T2WI white matter and pons. T1WI normal</td>
<td>nl</td>
<td>Rule out vasc</td>
<td>Bil carotid</td>
<td>Normal</td>
<td>Systemic necrotizing vasculitis</td>
<td>Left gastrocnemius muscle</td>
<td>s.c</td>
<td>Improved</td>
<td></td>
</tr>
<tr>
<td>III. Secondary vasculitis</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>50, F</td>
<td>Headache, arthralgia, fever, and seizure</td>
<td>Cortical and CMJ ischemia in right parietal and both occipital lobes on T2WI, resolved at 1 month</td>
<td>NA</td>
<td>Rule out vasc</td>
<td>3V</td>
<td>Classic vasculitis bilaterally</td>
<td>Systemic lupus erythematosis with CNS lupus</td>
<td>NA</td>
<td>NA</td>
<td>s</td>
<td>Improved</td>
</tr>
<tr>
<td>11</td>
<td>58, F</td>
<td>Right hemiparesis, expressive aphasia</td>
<td>NA (CT showed left frontal MCA/ACA borderzone infarct)</td>
<td>NA</td>
<td>Rule out vasc</td>
<td>Bil carotid</td>
<td>Classic vasculitis bilaterally. Slight disease, not otherwise specified improvement at 6 mo</td>
<td>Connective tissue deposition</td>
<td>Skin</td>
<td>s.c</td>
<td>Improved</td>
<td></td>
</tr>
<tr>
<td>IV. Indeterminate vasculopathy</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>31, M</td>
<td>Mental status change, seizure, and left homonymous hemianopsia</td>
<td>Acute ischemia in right occipital lobe and old cerebellar infarcts</td>
<td>nl</td>
<td>Rule out vasc</td>
<td>3V</td>
<td>Right parietal capillary blush</td>
<td>Drug-induced vasculitis</td>
<td>NA</td>
<td>NA</td>
<td>s</td>
<td>Same</td>
</tr>
<tr>
<td>13</td>
<td>18, F</td>
<td>Headache</td>
<td>NA</td>
<td>NA</td>
<td>Rule out VM</td>
<td>Left carotid</td>
<td>Normal</td>
<td>Left temporal hematoma. Unknown vasculitis</td>
<td>NA</td>
<td>NA</td>
<td>s</td>
<td>Same</td>
</tr>
<tr>
<td>14</td>
<td>20, M</td>
<td>Seizure</td>
<td>NA</td>
<td>NA</td>
<td>Rule out vasc</td>
<td>3V</td>
<td>Irregular narrowing in left middle meningeal artery</td>
<td>Drug-induced vasculitis</td>
<td>Right temporal lobe</td>
<td>NA</td>
<td>Resolved</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>59, F</td>
<td>Headache, vomiting homonymous hemianopsia</td>
<td>NA</td>
<td>NA</td>
<td>Rule out VM</td>
<td>3V</td>
<td>Smooth narrowing in both pericallosal artery</td>
<td>Normal</td>
<td>Temporal artery</td>
<td>NA</td>
<td>Resolved</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>14, F</td>
<td>Headache, left hemiplegia</td>
<td>Acute ischemia in right basal ganglia</td>
<td>nl</td>
<td>Stroke</td>
<td>3V</td>
<td>? thrombosis in right middle cerebral artery</td>
<td>? localized CNS vasculitis</td>
<td>NA</td>
<td>NA</td>
<td>ssa</td>
<td>Improved</td>
</tr>
<tr>
<td>Patient</td>
<td>Age, Sex</td>
<td>Clinical Presentation</td>
<td>MR Findings</td>
<td>G Angiogram Indic</td>
<td>Study</td>
<td>Angiogram Findings</td>
<td>Final Diagnosis</td>
<td>Pathology</td>
<td>Biopsy Site</td>
<td>Treatment</td>
<td>Outcome</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>-------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>31, F</td>
<td>Left-sided numb- ness</td>
<td>Demyelination pattern</td>
<td>nil Rule out vasc</td>
<td>3V</td>
<td>Normal</td>
<td>? drug-induced vasculitis</td>
<td>NA</td>
<td>NA</td>
<td>s</td>
<td>Same</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>39, M</td>
<td>Left hemiparesis</td>
<td>Confluent white matter hyperintensity on T2WI</td>
<td>nil Rule out vasc</td>
<td>3V</td>
<td>Normal</td>
<td>Demyelination vs NA vasculitis</td>
<td>NA</td>
<td>NA</td>
<td>s</td>
<td>Same</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>64, M</td>
<td>7 month history of left-sided sensory changes, spells, elevated cerebrospinal fluid protein</td>
<td>Subacute right putamen hemorrhagic stroke with parenchymal enhancement. Focal hyperintensities on T2WI in brainstem, periventricular white matter and cerebellum also hypointense on T1WI</td>
<td>Rule out stenosis 3V</td>
<td>Classic vs very severe intracranial atherosclerosis</td>
<td>Vasculitis? (only 9 days followup)</td>
<td>NA</td>
<td>NA</td>
<td>asa</td>
<td>Slight improvement, IF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note—G indicates additional findings on gadolinium-enhanced images; ab, additional abnormality revealed on enhanced images; nl, no additional abnormality on enhanced images; T2WI, T2-weighted images; T1WI, T1-weighted images; CMU, corticomedullary junction; Angiogram Indic, stated indication for angiogram; VM, vascular malformation; vasc, vasculitis; Study, number of vessels injected (eg, vertebral, right and left internal carotid artery); MCA, middle cerebral artery; ACA, anterior cerebral artery; V, vessel; VA, vertebral artery; s, steroids; c, cyclophosphamide; asa, aspirin; NA, not applicable or not performed; and IF, inadequate followup.
TABLE 4: MR-angiogram correlation (number of patients)

<table>
<thead>
<tr>
<th>Normal or Incidental Angiogram</th>
<th>Normal or Incidental MR</th>
<th>Abnormal MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>19</td>
<td>36</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

TABLE 5: Clinical diagnoses of 19 patients with normal or incidental MR

- Cerebrovascular accident or transient ischemic attack: 5
- Seizure disorder: 4
- Encephalopathy of unclear cause: 4
- Rheumatoid arthritis, hypothyroidism: 3
- Systemic lupus erythematosus: 2
- AIDS-related lymphoma: 2
- Migraine: 1
- Lymphocytosis of unclear cause: 1
- Felty syndrome: 1

classic vasculitis pattern angiographically. This patient may well have had PACNS but was lost to follow-up without being treated for vasculitis. In addition, there was some possibility that the angiographic changes represented severe intracranial atherosclerosis, and the clinical diagnosis was equivocal.

True Vasculitis: Angiography

Five of seven patients (71%) with PACNS had classic changes of vasculitis on angiography (Fig. 1 and 2). Both PACNS patients who lacked the classic vasculitis pattern were biopsy proved (Fig 5). Overall, 8 of 11 (72%) true vasculitis patients had classic changes of vasculitis. All but one patient with the classic vasculitis pattern had involvement in at least four vascular distributions (major intracranial vessels or their territories; middle, posterior, or anterior cerebral artery; or superior cerebellar). Of the 8 patients with classic vasculitis, 7 had three vessel angiography performed, with 6 of these showing findings of vasculitis on injection of all three vessels (right and left internal carotid arteries plus left or right vertebral). One patient (patient 2) showed vasculitis in both anterior circulations but none in the posterior circulation on three vessel angiography. One patient with classic vasculitis (patient 11) had both internal carotid arteries injected and had abnormality bilaterally. In all, 22 of the 23 injections performed in patients with classic vasculitis showed findings of vasculitis.

True Vasculitis: MR

Nine of the 11 true vasculitis patients had MR performed with abnormality in every case (Table 3). The two patients without MR had brain computed tomography (CT) scans showing significant abnormality (stroke) which could reasonably be presumed detectable with MR had it been obtained (patients 5 and 11). Four had parenchymal hemorrhage (patients 2, 4, 6, and 8) (Fig 3). Three patients (patients 1, 9, and 10) had abnormal hyperintense foci at the corticomedullary junction on T2-weighted images (Fig 2). Three patients (patients 1, 7, and 9) had either focal or confluent hyperintensities on T2-weighted images that were documented to have resolved with her clinical improvement 1 month later (Fig 4). One patient (patient 3) had unusual lesions in the basis pontis and cerebral peduncle that were hyperintense on T2-weighted images and enhanced with contrast (Fig 1).

Eight of nine patients who underwent MR had T1-weighted sequences after administration of gadopentetate dimeglumine paramagnetic contrast agent. Three of these eight (patients 2, 7, and 3) had abnormal patterns of enhancement, two of which were leptomeningeal enhancement (Fig 5). There were no cases in which contrast-enhanced sequences revealed abnormality in the face of a normal T2-weighted sequence.

In summary, there was no characteristic pattern of vasculitis on MR. Parenchymal hemorrhage, hyperintense foci in the white matter and at the corticomedullary junction, strokes of various size, leptomeningeal enhancement, brainstem lesions, and cortical ischemic areas all were seen.

Yield of Angiography

Eighty-three of the patients in this study had an angiogram performed to "exclude vasculitis." Five of these angiograms showed findings consistent with vasculitis (classic pattern) and helped establish the diagnosis, for a diagnostic yield of 6%.

Of the 11 patients defined by us as having true vasculitis, 5 of 11 (45%) were suspected before angiography and then diagnosed angiographically. Conversely, 5 of 11 (45%) were not suspected before angiography but rather were discovered incidentally at angiography (3 patients),
or were ultimately diagnosed pathologically despite a negative angiographic study (2 patients). One of the 11 (9%) was suspected to have vasculitis before angiography but had a negative angiogram, with the diagnosis supported by pathology. In the subset of PACNS patients, only 2 of 7 were suspected before angiography and then diagnosed angiographically.

Discussion

PACNS has been the subject of numerous case reports and series since its original description as a clinical entity in 1959 by Cravioto and Feigin (12). PACNS is an angitis isolated to the CNS that tends to affect small to medium sized vessels of the brain parenchyma and meninges but can affect vessels of any size (4). PACNS has also been referred to as isolated or granulomatous angitis of the CNS (13–15). Although characteristic, the presence of granulomas is not essential to the diagnosis, but rather probably represents a particular stage of evolution of the disease (13). Although PACNS is the best described form of intracranial vasculitis, many authors stress the number of diverse entities that can cause intracranial vasculitis, in addition to the nonvasculitic entities that can cause a similar angiographic appearance (3–6, 16). The purpose of our study was to provide a description of the expected frequencies of the various causes of intracranial vasculitis from an imaging perspective, and to evaluate the role of imaging modalities in making the diagnosis.

The types of vasculitis we encountered were consistent with the hierarchy of our classification scheme. Most of our patients had PACNS (seven). There were 2 patients each with primary systemic
vasculitis (category 2) affecting the CNS and with secondary (category 3) vasculitis. One of these patients had systemic lupus erythematosus. Neuropsychiatric symptoms are very common in patients with systemic lupus erythematosus but in the majority of such patients symptoms are not caused by true intracranial vasculitis (17, 18). Nevertheless, there are case reports of true vasculitis in patients with systemic lupus erythematosus, rheumatoid arthritis, and even scleroderma (19–21). Not surprisingly, we had no patients in category 4.

Angiography has been considered the initial study of choice to exclude intracranial vasculitis, particularly PACNS (1, 4, 13). Thus, we used angiographic records as the starting point for our review. The number of patients evaluated for vasculitis actually may have been underestimated by our study because the criterion for entry (retrospectively) was an angiographic requisition listing vasculitis as the primary indication or a clinical diagnosis of vasculitis and history of an angiogram. We cannot exclude the possibility that vasculitis was considered but not indicated on the requisition, to say nothing of patients who may have had vasculitis but in whom the diagnosis was not considered. We make no claim to have detected all cases of intracranial vasculitis; indeed, this would be very difficult because autopsy may be the only way to diagnose some cases.

It has been stated that the angiographic vasculitis pattern is often mimicked by intracranial atherosclerosis (5, 6, 22). This may depend upon how strict the definition of an angiographic vasculitis pattern is. In this study there were 3 patients identified by both the original readers and the reviewers as having multiple foci of intracranial atherosclerosis, and none of the 3 had a course consistent with vasculitis. There were no patients with the classic vasculitis pattern that did not have supporting evidence of intracranial vasculitis. However, it should be noted that patient 19 may have had severe intracranial atherosclerosis, and we have encountered several patients over this time frame (not part of this study) who were not being evaluated for intracranial vasculitis yet showed incidental severe intracranial atherosclerosis that would be difficult to distinguish from vasculitis. The specificity of angiography should be enhanced by consideration of the patient’s age and clinical presentation and whether there is other evidence of atherosclerosis.

Angiography, although useful and often very specific, should not be thought of as the standard of reference in diagnosis. The sensitivity is too low to conclude that a negative angiogram excludes the disease. Our estimate of angiographic sensitivity using our definition of the classic vasculitis pattern is 70%, a figure in close accord with that estimated in a review of 48 patients with PACNS by Calabrese and Mallek (4). Our experience and the published literature both suggest that a negative MR does more to exclude vasculitis than does a negative angiogram. No patients in this study suffered morbidity from angiograms. However, there was one patient who died as a result of brain biopsy, despite three normal MRs and a negative angiogram. The autopsy showed massive intracranial hemorrhage at the biopsy site as the cause of death. Neither the biopsy nor autopsy showed any evidence of vasculitis.

The yield of angiography in this series was only 6%. Theoretically, low yield with a diagnostic test could be explained by either poor test performance or the effect of low prevalence. In the case of angiography to rule out vasculitis, low yield is not attributable to poor test performance. This can be illustrated by assuming that the sensitivity of angiography is 100%, rather than our estimate of 70%. If this were the case, only one additional patient would have been detected (patient 9) because only 6 of the 11 vasculitis cases were suspected before angiography. It is the low prevalence of intracranial vasculitis that assures a low yield with any diagnostic test and guarantees that the vast majority of angiograms performed in search of vasculitis will not diagnose vasculitis.

Although all 7 of their patients had abnormal MRs, Greenan and colleagues (9) hypothesized that it was possible to have a negative MR in a patient with a positive angiogram. They based this on the fact that MR abnormality was not evident in every vascular distribution showing angiographic involvement. Theirs is an interesting observation and we do not take issue with it as a theoretical possibility. However, we think it is more relevant to consider MR or angiographic findings for the whole brain as either negative or positive when comparing test results. All 9 of our patients with true vasculitis who had both MR and angiography had a significantly abnormal MR, even the 3 without the classic vasculitis pattern. In addition, the 2 patients without MR had evidence of acute stroke on CT. This relationship between abnormal MR findings and ulti-
Intracranial Vasculitis

Although there were no cases in which contrast enhancement demonstrated the sole abnormality, the finding of leptomeningeal enhancement in two patients as well as the known predilection of PACNS for leptomeningeal vessels (16) suggest that paramagnetic contrast-enhanced images might be useful if vasculitis is suspected.

In summary, MR appears to be very sensitive and would have served as a useful screen in our series to exclude patients from further evaluation with angiography or biopsy (Table 4). Nineteen of the 70 patients who had both MR and angiography had normal or incidental MRs. None of these 19 was among the 11 patients with true vasculitis or among the 8 with indeterminate vasculopathy. The low yield of angiography performed to exclude vasculitis (6%) further supports the rationale for using MR as a screening tool, especially because MR has usually been obtained somewhere in the diagnostic workup, and consideration of the findings on a test already performed makes a particularly cost-effective screen. Both imaging specialists and clinicians should note that most (55%) of our vasculitis cases were not diagnosed on an angiogram performed to exclude vasculitis but were discovered on angiograms performed for other indications or were diagnosed only at biopsy. This proportion was even higher for cases of PACNS (5 of 7), which is usually what the radiologist is asked to exclude.

We believe that the evaluation of patients with suspected intracranial vasculitis should include initial evaluation with MR. If high-quality MR can be obtained and is normal or shows only incidental findings, we believe that this does more to exclude the possibility of intracranial vasculitis than does a negative angiogram, and makes the likelihood of an ultimate diagnosis of vasculitis negligible. If the MR is abnormal and the cause is still unclear, one can proceed to angiography. If angiography is then normal or equivocal, this does not exclude vasculitis, and brain and leptomeningeal biopsy may be required.

Acknowledgments

We gratefully acknowledge the advice and criticism offered by Jon Lemke, PhD, and Paul Chang, MD.

References

2. Savage COS, Ng YC. The aetiology and pathogenesis of major systemic vasculitides. Postgrad Med J 1986;62:627
13. Cupps TR, Moore PM, Fauci AS. Isolated angiitis of the central


