Cerebrotendinous xanthomatosis (van Bogaert-Scherer-Epstein disease): CT and MR findings.

M T Dotti, A Federico, E Signorini, N Caputo, C Venturi, G Filosomi and G C Guazzi

http://www.ajnr.org/content/15/9/1721
Cerebrotendinous Xanthomatosis (van Bogaert-Scherer-Epstein Disease): CT and MR Findings

Maria Teresa Dotti, Antonio Federico, Enrico Signorini, Nevia Caputo, Carlo Venturi, Giuseppe Filosomi, and Gian Carlo Guazzi

PURPOSE: To describe the CT and MR findings in the brain and spinal cord of patients with cerebrotendinous xanthomatosis and to seek possible correlations between clinical, biochemical (cholestanoil levels), and neuroimaging findings. METHODS: Ten patients with well-defined clinical and biochemical diagnoses of cerebrotendinous xanthomatosis were examined. Brain CT was performed in eight cases. In all patients MR was obtained using spin-echo and gradient-echo sequences. In eight patients spine MR was also performed. RESULTS: Neuroradiologic findings included diffuse cerebral and cerebellar atrophy. In half the cases, atrophy of the brain stem and corpus callosum was also found. In the majority of patients cerebellar bilateral focal lesions and mild white matter signal alterations were present. Spinal cord MR did not show signal abnormalities or atrophy. CONCLUSIONS: We found cranial alterations in patients with severe neurologic impairment, but there was no correlation with cholestanol plasma levels. No spinal cord abnormalities were present.

Index terms: Degenerative disease; Brain, computed tomography; Brain, magnetic resonance; Spinal cord, magnetic resonance

Cerebrotendinous xanthomatosis is a rare recessive inherited disorder of lipid metabolism, with a fairly constant clinical phenotype characterized by tendon xanthomas, early cataracts, mental deterioration, and spastic-ataxic signs (1). Neuropathologic studies have revealed granulomatous and xanthomatous lesions mainly in the cerebellum, the globus pallidus, and cerebellar peduncles. Only scattered collections of xanthoma cells have been reported in the white matter adjacent to the lateral ventricles. Demyelination and gliosis of the cerebellar and cerebral white matter and involvement of the spinal cord long tracts also have been observed (2-5). In 1965, van Bogaert described a case of a pure spinal form of cerebrotendinous xanthomatosis, without brain involvement (6).

The first computed tomography (CT) and magnetic resonance (MR) imaging studies revealed diffuse lesions in the cerebellar and cerebral white matter (7, 8). More recently, Fiorelli et al (9) in one case and Hokezu et al (10) in seven cases found focal cerebral and/or cerebellar lesions. Mild atrophy was also observed by the latter authors in all patients. MR of the spinal cord in cerebrotendinous xanthomatosis has been reported only once (11) and showed moderate cervical cord atrophy.

We describe the CT and MR findings in the brains and spinal cords of 10 patients with cerebrotendinous xanthomatosis and discuss them in light of prior literature.

Subjects and Methods

We examined 10 patients with cerebrotendinous xanthomatosis, followed during the last 6 years. The diagnosis was defined on the basis of clinical and biochemical parameters (cholestanol level greater than 1 mg/dL). The main clinical data and cholestanol levels are summarized
Clinical data, cholestanol level, and brain MR findings

<table>
<thead>
<tr>
<th>Case</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>F</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>Age, y</td>
<td>36</td>
<td>38</td>
<td>35</td>
<td>40</td>
<td>35</td>
<td>44</td>
<td>51</td>
<td>41</td>
<td>36</td>
<td>49</td>
</tr>
<tr>
<td>Cataract</td>
<td>p</td>
</tr>
<tr>
<td>Xanthomas</td>
<td>p</td>
</tr>
<tr>
<td>Dementia</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Pyramidal signs</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Cerebellar signs</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Seizures</td>
<td>p</td>
<td>-</td>
<td>p</td>
<td>-</td>
<td>p</td>
<td>-</td>
<td>p</td>
<td>-</td>
<td>p</td>
<td>-</td>
</tr>
<tr>
<td>Cholestanol*</td>
<td>3.0</td>
<td>2.9</td>
<td>2.3</td>
<td>2.8</td>
<td>3.2</td>
<td>1.7</td>
<td>np</td>
<td>3.5</td>
<td>4.2</td>
<td>1.7</td>
</tr>
</tbody>
</table>

MR findings

Cerebral atrophy
- Cortical: +++ + ++ + ++ +++ + ++ + - - +++
- Central: +++ - ++ + ++ ++ ++ + - - +++
Cerebellar atrophy: + + ++ + + ++ +++ + - + +++
Brain stem atrophy: ++ - - - + + ++ + + - - ++
Corpus callosum atrophy: + - - + ++ ++ + ++ - - ++

Focal lesions
- Cerebral: - - - - - - - p p - - -
- Cerebellar: p p X - X X X - - X
- Brain stem: p - - - - - - p - - -
- Basal nuclei: - - - p - p - - - p

White matter changes: + ++ + ++ + ++ + - - ++

Note. - p indicates present; *, opacity of crystalline lens; +, mild; ++, moderate; ++++, severe; - , absent; np, not performed; and X, (presumed) xanthomas.

*a Milligrams per deciliter (normal value, <1.0).

Results

CT of the brain showed cerebral and/or cerebellar atrophy in all patients except in cases 8 and 9. Cerebellar bilateral hypodense lesions containing small calcification-like opacities were found in cases 6 and 10 (Fig 1A). The brain MR findings are summarized in the Table. Cerebral cortical and central atrophy was observed in all but one patient and was severe in four. Cerebellar atrophy, absent only in case 8, ranged from mild to severe (Figs 2 and 3). Brain stem atrophy was observed in five patients. In the same patients, and in case 4, atrophy of the corpus callosum was also found (Fig 2). In some cases, high-signal focal lesions in T2-weighted images were detected in the cerebral (peritrigonal white matter and corona radiata in cases 6 and 7, respectively) and cerebellar (cases 1 and 2) white matter (Fig 3). Cerebellar nonhomogeneous areas of abnormal signal intensity were found in five patients (cases 3, 5, 6, 7, and 10) in the dentate nuclei bilaterally (Figs 1B-D). The hypointense T2-weighted and hypointense T1-weighted images are probably caused by necrotic tissue (Figs 1B-D) as suggested by signal characteristics and neuropathologic observations in other cases of cerebrotendinous xantho-
Cerebrotendinous xanthomatosis is a rare but widespread metabolic disorder of lipid metabolism. We observed a considerable number of patients during a period of several years because our institute is one of the reference centers for neurogenetic disorders in Italy. The biochemical pathogenesis of cerebrotendinous xanthomatosis is related to abnormal bile acid synthesis caused by a defect in sterol 26-hydroxylase, a mitochondrial enzyme catalyzing the initial steps in the oxidation of the side chain of sterol intermediates in the metabolic pathway of cholesterol, resulting in increased plasma and tissue concentrations of cholestanol and decreased formation of cholic and chenodeoxycholic acid. Mutations in the sterol 26-hydroxylase gene in Jewish patients of Moroccan origin who had cerebrotendinous xanthomatosis recently have been reported (14). The tendons and central nervous system are primarily involved, but alterations also have been found in the peripheral nerves (12), muscle (15), and bone (16).

In the CT studies of Berginer et al (7) and Waterreus et al (8), high frequencies of diffuse hypodense lesions of the central white matter and mild atrophy are reported. More recently,
Hokezu et al (10) performed brain MR in eight patients with cerebrotendinous xanthomatosis and found evidence of “multiple foci of high signal in various regions including the centrum semiovale, corona radiata, the white matter along the lateral ventricle, the globus pallidus and cerebellum” than of diffuse cerebral and/or cerebellar lesions. They did not draw definitive conclusions about the nature of the lesions observed by CT and MR. Moreover, they found only mild and sometimes equivocal cerebral and cerebellar atrophy, even in patients with very severe mental deterioration. In our study, all patients had cerebral and/or cerebellar atrophy, generally moderate or severe. Only cases 2, 8, and 9, without clear mental deterioration, showed insignificant cerebral and/or cerebellar atrophy. Atrophy of the brain stems and corpora callosa was present in five and six cases, respectively. Some authors (17, 18) recently focused on the high frequency of corpus callosum hypoplasia in childhood inherited metabolic diseases and suggested that this structure is particularly vulnerable to toxic metabolites. Because cerebrotendinous xanthomatosis is a late-onset neurometabolic disorder, high cholesterol levels could have a toxic effect on neurons and myelinated axons, leading to atrophy and secondary demyelination. We did not find significant diffuse lesions of the white matter apart from a slightly periventricular hyperintensity consistent with demyelination. In fact, necropsy studies have shown central demyelination (2, 5), and peripheral demyelination has
been described in neurophysiologic and nerve biopsy investigations of a large number of patients with cerebrotendinous xanthomatosis (12, 13, 19, 20). In a few cases, hyperintense focal lesions, probably reflecting demyelination or gliosis, were detected in the cerebral white matter, brain stem, and basal nuclei.

MR showed bilateral cerebellar lesions in seven patients, in five of them characterized by nonhomogeneous areas of abnormal signal intensity suggesting the presence of xanthomas formation. Cerebellar calcium deposits, confirmed in two cases by CT, are likely related to the necrosis associated with the xanthomas. As a whole, comparing clinical and neuroradiologic data, we found more brain neuroradiologic alterations (atrophy and focal lesions) in patients with severe neurologic impairment. On the other hand, in cases 8 and 9 with very mild clinical signs, no significant CT or MR alterations were evident. As in the cases of Hokezu et al (10), no correlations were present between cholestanol plasma levels and neuroradiologic abnormalities. However, at the time of radiologic examination, all our cases but two (cases 8 and 9) were taking chenodeoxycholic acid, a drug that has been demonstrated to reduce demyelinating lesions in the central (21) and peripheral nervous systems (13). MR combined with electrophysiological studies (electroencephalography and conduction velocities of peripheral nerve and evoked potentials) therefore could be other useful ways of evaluating the effect of therapy (13).

There is one previous report of spinal MR (11) performed in a case of cerebrotendinous xanthomatosis and revealing cerebral cord atrophy. We performed MR of spinal cords in eight patients. Despite neuropathologic reports of spinal long-tract involvement even in cases with the most common cerebral type of cerebrotendinous xanthomatosis (5, 6), and van Bogaert’s description of a pure spinal form (6), in our cases MR failed to reveal any signal alterations or atrophy.

Acknowledgment

We thank Dr G. Salen for the determination of cholestanol levels.

References

2. van Bogaert L, Scherer HJ, Epstein E. Une Forme Cérébrale de la Cholestérinoze généralisée. Paris: Masson et Cie, 1937