Childhood leukemia: central nervous system abnormalities during and after treatment.

C Y Chen, R A Zimmerman, S Faro, L T Bilaniuk, T Y Chou and P T Molloy

AJNR Am J Neuroradiol 1996, 17 (2) 295-310

http://www.ajnr.org/content/17/2/295

This information is current as of July 16, 2023.
Childhood Leukemia: Central Nervous System Abnormalities during and after Treatment

Cheng-Yu Chen, Robert A. Zimmerman, Scott Faro, Larissa T. Bilaniuk, Ting-Ywan Chou, and Patricia T. Molloy

PURPOSE: To document the radiologic abnormalities seen in the central nervous system (CNS) during and after treatment of childhood leukemia. METHODS: MR images (19 patients) and CT scans (12 patients) were reviewed retrospectively in 19 children and adolescents with neurologic complications of leukemia or its treatment. Patients were divided into two groups: the first included those with disease-related complications of leukemia, such as meningeal and parenchymal leukemia, chloroma, and cerebrovascular disorders; the second included patients with treatment-related neurotoxicity and infection caused by immunocompromised states. Pathologic confirmation of the CNS lesions was obtained in eight patients. Factors that predisposed to the development of tumor-related or treatment-related complications were determined by reviewing the medical records. RESULTS: Among the 19 patients, 10 had two or more different CNS abnormalities found on CT scans or MR images. The imaging abnormalities seen in 12 patients during treatment included sinus thrombosis (n = 3), transient gray or white matter ischemia (n = 2), presumed disseminated microinfarcts (n = 1), cerebral hemorrhage or infarct (n = 3), inflammatory demyelinating polyradiculoneuropathy (n = 1), infections (n = 4, 2 bacterial and 2 fungal), and meningeal leukemia (n = 2). After therapy, seven patients had CNS imaging abnormalities, including secondary brain tumors (2 malignant gliomas and 1 CNS lymphoma), spinal chloroma (n = 1), necrotizing leukoencephalopathy and mineralizing microangiopathy (n = 3), cerebral mucormycosis (n = 1), spontaneous intracranial hemorrhage (n = 3), and spinal meningeal leukemia (n = 1). CONCLUSION: The wide spectrum of CNS abnormalities that occur during and after treatment for leukemia is related to the inherent risk of the leukemia itself, to the treatment method, and to the duration of survival. Because many neurologic complications of leukemia are treatable, early diagnosis is essential.

Index terms: Leukemia; Children, diseases

Leukemia remains the most common form of childhood cancer, representing 3.7% of cancer deaths in the United States (1). In earlier years, central nervous system (CNS) complications of leukemia were rare because of the rapid fatality of the disease. More recently, with advances in treatment methods and consequent prolonged survival, the frequency of neurologic complications has increased (2, 3). CNS complications are caused either by the primary disease or by the therapy. Primary effects of the disease may include leukemic involvement of the leptomeninges, brain parenchyma, and cerebrovasculature (4). Treatment-related CNS complications may consist of white matter lesions, small-vessel calcifications, cerebrovascular disorders, secondary tumors, and infections (5–8). Both early and late CNS complications can be related to the neurotoxicity of the chemotherapeutic regimes (9, 10), radiation therapy (11), bone marrow transplantation (12), and immunosuppression caused by the disease itself or its treatment. Children and adolescents who survive the leukemia may contract endocrinopathy and/or
neurocognitive deficits caused by the late effects of the antileukemic treatment (13).

The clinical manifestations of CNS complications of leukemia that follow treatment are variable. Early recognition of these complications is important in order to institute treatment and increase the chances for overall survival. Several reports have described the usefulness of magnetic resonance (MR) imaging and computed tomography (CT) in the detection of those CNS complications (11, 14–17). We present the MR and CT features of CNS abnormalities in 19 children and adolescents with neurologic symptoms and signs that developed during or after antileukemic treatment. We discuss the potential relationship of the various CNS complications of the treatment methods, the duration of survival after initial treatment, and the timing of the clinical presentation.

Materials and Methods

Subjects

We retrospectively evaluated the cranial and spinal MR images and CT scans of 19 patients (14 male and five female) 8 months to 21 years old. The patients had various types of childhood leukemia, including 14 cases of acute lymphoblastic leukemia, 3 cases of acute myelogenous leukemia, 1 case of acute promyelogenous leukemia, and 1 case of mixed lineage leukemia (acute lymphoblastic leukemia and acute myelogenous leukemia). All initial MR images were obtained at the time of development of new neurologic symptoms and signs. Patients were examined during and after antileukemic treatment. Patients were divided into two groups: group 1 included 12 patients who had CNS abnormalities that occurred during therapy or within 3 months of completion of treatment; group 2 contained 7 patients with CNS abnormalities that occurred as late effects of leukemia.

The medical records were reviewed with attention to the type of treatment given, the time of onset of symptoms after the initial therapy and after the last therapy, and the outcome of the various CNS complications. The results of one postmortem neuropathologic examination and seven surgical biopsies of the brain and spinal lesions were reviewed. Neurologic development and psychosocial measurement were not evaluated.

Imaging Studies

In 18 of the 19 patients, MR images were obtained with two 1.5-T scanners (Siemens SP, Germany; Picker Vista HPQ, USA) during a period of 3 years (1991–1993). One patient, who was transferred for bone marrow transplantation, had MR imaging performed at another hospital. The 12 patients in group 1 were examined with MR or CT during or after the initiation of therapy. Among group 2 patients, imaging was performed at least 3 months after therapy was initiated. The imaging sequences consisted of spin-echo T1-weighted, 500–600/15–40/1–2 (repetition time/echo time/excitations), axial and sagittal images with 3- to 5-mm-thick sections obtained before and after intravenous injection of gadopentetate dimeglumine (0.1 mmol/kg) and T2-weighted, 2800–3000/90–120/1, axial and/or coronal images with 5-mm-thick sections. Additional coronal T1-weighted images were obtained when indicated. One patient with a spinal lesion was studied after intravenous injection of a triple dose of gadoteridol (0.3 mmol/kg). Two-dimensional time-of-flight MR angiography was performed in three patients in whom sinus thrombosis was evident on spin-echo MR images. The parameters used with this technique were as follows: 32/10; field of view, 20 to 22 cm; matrix, 192 × 256; flip angle, 50°; section thickness, 1.5 mm; section slab thickness, 3 to 7.5 cm. The scanning planes of the MR angiograms were axial, oblique-coronal, and sagittal, selected
for different segments of the dural sinuses. Ten patients had two or more follow-up MR studies. Twelve patients also had CT studies and four of these had serial cranial CT scans before CNS complications developed.

Results

Among the 19 patients who had received antileukemic treatment, 12 had early CNS complications identified on MR images and CT scans. These included sinus thrombosis (n = 3) (Fig 1), transient gray or white matter ischemia (n = 2) (Figs 2 and 3), presumed disseminated microinfarcts (n = 1) (Fig 4), cerebral hemorrhage or infarct (n = 3), inflammatory demyelinating polyradiculoneuropathy (n = 1) (Fig 5), infection (2 bacterial [Figs 6 and 7] and 2 presumed fungal [Figs 8 and 9]), and cerebrospinal meningeal leukemia (n = 2). The second group, with CNS complications that occurred late, comprised seven patients with the following lesions: three secondary brain tumors, including glioblastoma multiforme (Fig 10), anaplastic astrocytoma (Fig 11), and B-cell lymphoma (Fig 12); one spinal epidural chloroma (Fig 13); three necrotizing leukoencephalopathies and mineralizing microangiopathy (Fig 14); one isolated cerebral mucormycosis (Fig 15); three intracranial hemorrhages; and one spinal meningeal leukemia.

In group 1, four cerebrovascular events were believed to be related to asparaginase therapy and included two sinus thromboses, one spontaneous hemorrhage, and one case of reversible cortical ischemia. Two patients were thought to have disseminated microabcesses of the brain caused by fungal infections. No fungus was found on cultures from urine, blood, and cerebrospinal fluid (CSF). Even the brain specimen from open biopsy in case 12 failed to show the causative organism. Both patients improved clinically and radiologically after empiric treatment with amphotericin. In group 2, irreversible necrotizing leukoencephalopathy and calcification of basal ganglia and subcortical white matter were identified in three patients with acute lymphoblastic leukemia who were treated with combined irradiation and intrathecal methotrexate 5 to 7 years earlier. The brain calcification in case 14 was seen as early as 3 years after treatment. The clinical profiles of the 19 patients are given in the Table.

Fig 2. Case 2: 16-year-old boy with cerebral and cerebellar cortical ischemia, which occurred during chemotherapy for acute lymphoblastic leukemia.

A and B, MR images show symmetrical high-signal lesions in the bilateral frontoparietal and parietooccipital lobes (arrowheads) on proton density–weighted image (A) and in cerebellar cortices (arrows) on T2-weighted image (B). A follow-up MR study 6 months later showed complete resolution of the ischemic cortical lesions (not shown).

Fig 3. Case 3: 5-year-old boy with bilateral cerebral white matter edema or demyelination, which occurred 3 weeks after last intravenous injection of methotrexate to treat acute lymphoblastic leukemia. Coronal T2-weighted MR image shows high-signal lesions in the bilateral periventricular white matter and centrum semiovale (arrows). The white matter lesions disappeared completely on a follow-up MR image 2 months later when patient was symptom-free.
The MR and CT findings of the CNS abnormalities in the 19 patients with leukemia are similar to the neuroimaging characteristics seen in patients with the same CNS abnormalities (ie, hemorrhages, infarcts, meningitis, sinus thrombosis, and malignant glioma) but without leukemia. The MR findings in patient 16, who had CNS B-cell lymphoma after bone marrow transplantation, and in patient 1, who had presumed disseminated microinfarcts, have not previously been reported. The CNS B-cell lymphoma appeared hyperintense on plain CT scans and hypointense on T1- and T2-weighted MR images (Fig 12). The tumor did not enhance after intravenous contrast administration on either CT scans or MR images. The patient with disseminated microinfarcts had multiple tiny areas of low signals with mild perifocal edema in the cerebrum and brain stem on T2-weighted MR images. The microinfarcts were slightly hyperintense on T1-weighted images (Fig 4).

Discussion

Owing to advancements in antileukemic treatment, by 1990, one in every 2000 young people who reached the age of 20 was a survivor of childhood acute lymphoblastic leukemia (18). With improved survival, the neurologic complications of antileukemic treatment have also increased. Currently, many of the CNS complications seen in connection with acute lymphoblastic leukemia are related to the neurotoxicities of various chemotherapeutic regimens, such as methotrexate (19), cytarabine (20), the acute and delayed effects of CNS radiation (21), the adverse effects of bone marrow transplantation (22), coagulopathy caused by the disease or by asparaginase (10), and breakdown of the immune mechanism resulting from the leukemia itself or from bone marrow suppression with intense chemotherapy.

The CNS complications that occurred early in the leukemic course were frequently cerebro-
vascular disorders and infections. Of nine patients with cerebrovascular accidents, four were related to asparaginase. Two patients with superior sagittal sinus thrombosis treated with asparaginase (cases 5 and 6) improved clinically, presumably as a result of fresh frozen plasma therapy. Follow-up MR imaging (case 5) showed partial resolution of the thrombus in the superior sagittal sinus. One patient (case 6) had venous infarct complicating the dural sinus thrombosis. Another patient (case 2) with transient cortical ischemia after intravenous administration of asparaginase completely recovered after treatment was discontinued: a follow-up MR image showed total resolution of the ischemic cortical lesions. Treatment with asparaginase leads to the depletion of plasma proteins involved in both coagulation and fibrinolysis and has been linked to cerebrovascular complications, including cortical infarct, intracerebral hemorrhage, hemorrhagic infarct, and dural sinus thrombosis (10, 23, 24).

Cerebrovascular thrombosis or hemorrhage can also occur in the course of antileukemic treatment as a result of leukocytosis, thrombocytopenia, sepsis, and coagulopathy (25, 26, 27). One patient with acute myelogenous leukemia (case 4) presented with encephalopathy and had CT and MR imaging findings that were consistent with disseminated microinfarcts, which were thought to be related to leukocytosis. Multiple microinfarcts associated with small-vessel thromboses have previously been observed in patients with malignant tumors in whom a syndrome of global encephalopathy developed (28). The presumed multiple small-
Fig 7. Case 10: 9-year-old girl with acute lymphoblastic leukemia had hemorrhagic infarcts of bilateral occipital lobes and superimposition of leptomeningeal leukemia and meningitis related to Acinetobacter infection.

A, Noncontrast CT scan shows hemorrhage of the occipital lobes (arrows) along with dilatation of the lateral ventricles caused by communicating hydrocephalus.

B, Postcontrast T1-weighted MR image at the level of the lateral ventricle shows diffuse enhancement of the brain surface. The high signal enhancement was even more conspicuous in the hemorrhagic area of the occipital lobes (arrows).

Fig 8. Case 11: 11-year-old girl with presumed systemic and cerebral candidiasis, which developed during repeat chemotherapy for acute lymphoblastic leukemia.

A, T1-weighted MR image shows a rimlike lesion (large arrow) with hyperdense wall and internal hypodensity in the left putamen. The lesion with complex high and low signals (small arrows) in the right basal ganglia was caused by previous spontaneous hemorrhage.

B, Postcontrast T1-weighted MR image shows rimlike enhancement of the left putaminal lesion (arrow). More enhancing small nodules were found in the right superior frontal region, the left parietal lobe, and the inferior frontal regions (not shown).

C, A follow-up contrast-enhanced T1-weighted MR image obtained after empiric treatment with amphotericin B shows a decrease in the size of the lesion in the left putamen (large arrow) and of the hematoma in the right basal ganglia (small arrows).
vessel thromboses in this patient appeared as multiple tiny areas of low signal intensity in the brain parenchyma and brain stem on T2-weighted images and as areas of mild hyperintense signal intensity on T1-weighted images without contrast enhancement. An unenhanced CT scan obtained at the same time showed few tiny hyperintense lesions in the brain. On the basis of the imaging characteristics, the tiny lesions appeared to be small intravascular thrombi, and they resolved completely after conservative treatment.

During chemotherapy with all-trans retinoic acid, one patient with acute promyelogenous leukemia (case 1) had acute onset of seizure and left-sided limb weakness, resulting from thrombosis of the right sigmoid sinus (Fig 1) and leukostasis. Acute promyelogenous leukemia itself is a disease in which disseminated intravascular coagulopathy is to be expected (26). In a study by Kantarjian et al (29), as many as 26% of patients with acute promyelogenous leukemia had early fatal hemorrhage associated with disseminated intravascular coagulopathy.
Fig 11. Case 15: 12-year-old boy with anaplastic astrocytoma, which developed 5.5 years after therapy for acute lymphoblastic leukemia.

A, Noncontrast CT scan obtained 3 years after initial combined treatment with irradiation and intrathecal chemotherapy shows calcifications (arrows) in the subcortical region of the frontoparietal lobes.

B, Postcontrast parasagittal T1-weighted MR image obtained 3 years after that in A shows an enhancing mass (arrows) in the right superior frontal lobe.

C, The right superior frontal mass appeared as a lesion of high signal intensity (white arrows) with a central rim of hypointensity (black arrow) on axial T2-weighted MR image. Symmetrical high signals (arrowheads) in the high convexity of the parietal white matter were caused by delayed radiation injury.

Fig 12. Case 16: 11-year-old boy with multiple B-cell lymphomas, which occurred 4 months after bone marrow transplantation for treatment of acute lymphoblastic leukemia.

A, Postcontrast T1-weighted MR image at the level of the foramen of Monro shows unenhancing masses in the left basal ganglia and left frontal lobe (arrows) and in the right cerebellar hemisphere (not shown).

B, On T2-weighted image, the masses are hypointense (arrows) relative to the cerebral cortex, with mass effect and considerable high-signal vasogenic edema.
Fig 13. Case 17: 3-year-old boy with spinal epidural chloroma and cerebral hemorrhagic infarct, which developed 1 year after treatment for acute myelogenous leukemia.

A, Sagittal postcontrast T1-weighted image shows the enhancing epidural mass (arrows) within the spinal canal.

B, Axial T2-weighted MR image of the brain shows subacute hemorrhagic infarct with gyriform low signals (arrows) in the right occipital lobe.

Fig 14. Case 19: 7-year-old boy with mineralizing arteriopathy, which developed after 5 years of combined therapy with irradiation and intradural methotrexate for treatment of acute lymphoblastic leukemia.

Postcontrast T1-weighted MR image shows high-signal lesions (arrows) in the bilateral basal ganglia, thalami, and frontal and occipital subcortical regions. The high-signal lesions were present on noncontrast T1-weighted images (not shown).

Fig 15. Case 13: 7-year-old boy with cerebral mucormycosis, which occurred 3 months after treatment for acute lymphoblastic leukemia.

A, Coronal postcontrast T1-weighted MR image shows rim-enhancing mass (arrows) in the right posterior temporal lobe.

B, On T2-weighted MR image, the mass appears hypointense (arrowheads) relative to the cerebral cortex, with considerable high-signal vasogenic edema.
<table>
<thead>
<tr>
<th>Case</th>
<th>Age, y/ Sex</th>
<th>Leukemia Type</th>
<th>Interval</th>
<th>Symptoms and Signs</th>
<th>CNS Abnormalities</th>
<th>Autopsy, Biopsy, or CSF Study</th>
<th>Outcome</th>
<th>MR Findings</th>
<th>CT Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5/F</td>
<td>APML RA</td>
<td>5/during first course of chemo</td>
<td>Seizure, L limb weakness</td>
<td>Sinus thrombosis, R sigmoid sinus</td>
<td>Partial autopsy</td>
<td>Died</td>
<td>Enhanced thrombus in R sigmoid sinus on T1 with Gd; MRA showed no flow in R sigmoid sinus</td>
<td>High-density blood clot in R sigmoid sinus</td>
</tr>
<tr>
<td>2</td>
<td>16/M</td>
<td>ALL Asp, VCR, adr, dexa</td>
<td>16/2 d after asp</td>
<td>Seizure</td>
<td>Multiple cortical ischemia</td>
<td>NP</td>
<td>Recovered</td>
<td>Increased signal of bilateral parietal and cerebellar cortices on T2</td>
<td>NP</td>
</tr>
<tr>
<td>3</td>
<td>5/M</td>
<td>ALL IV MTX, VCR, asp</td>
<td>5/3 wk after last IV MTX</td>
<td>Change of mental status</td>
<td>Bilateral WM edema or demyelination</td>
<td>NP</td>
<td>Recovered</td>
<td>Symmetrical HS in bilateral periventricular WM on T2</td>
<td>NP</td>
</tr>
<tr>
<td>4</td>
<td>3/M</td>
<td>AML IT MTX, ara-C, dauno</td>
<td>3/during first course of chemo</td>
<td>Encephalopathy</td>
<td>Presumed disseminated microinfarcts</td>
<td>NP</td>
<td>Improved</td>
<td>Disseminated tiny LS in brain on T2 and T2*; on T1 they were fewer and mildly hyperintense</td>
<td>Scattered tiny high densities in thalamus and cerebral white matter</td>
</tr>
<tr>
<td>5</td>
<td>9/F</td>
<td>ALL IT MTX, salvage, ara-C, asp</td>
<td>2/1 mo after salvage chemo</td>
<td>Seizure, fever</td>
<td>R occipital infarct</td>
<td>NP</td>
<td>Improved</td>
<td>Focal high signal in R occipital cortex on T2</td>
<td>Subtle low density in R occipital cortex</td>
</tr>
<tr>
<td>6</td>
<td>15/M</td>
<td>ALL IV MTX, VCR, asp</td>
<td>15/4th wk during first course</td>
<td>Seizure, L hemiparesis</td>
<td>SSS thrombosis</td>
<td>NP</td>
<td>Improved</td>
<td>Enhanced thrombus in SSS on T1 with Gd; MRA showed no flow in SSS</td>
<td>NP</td>
</tr>
<tr>
<td>7</td>
<td>12/M</td>
<td>ALL RT, IT MTX, asp, VCR</td>
<td>11.6/5 d after last asp</td>
<td>L hemiparesis</td>
<td>SSS thrombosis with venous infarct of R occipital lobe</td>
<td>NP</td>
<td>Improved</td>
<td>Poor visualization of SSS and R transverse sinus on T1 with Gd and MRA; HS in R occipital lobe on T2</td>
<td>NP</td>
</tr>
<tr>
<td>8</td>
<td>0.6/F</td>
<td>Mixed-lineage leukemia IT and IV ara-C, asp, VCR</td>
<td>0.6/3rd wk during first course of chemo</td>
<td>Limbs weakness, urinary retention</td>
<td>Inflammatory demyelinating polyradiculo-neuropathy</td>
<td>1. Biopsy 2. Negative CSF culture and cytology</td>
<td>Improved</td>
<td>Enhancement of cauda equina on T1 with Gd</td>
<td>NP</td>
</tr>
<tr>
<td>9</td>
<td>12/M</td>
<td>ALL IT MTX, asp, VCR, dauno</td>
<td>10.5/at the end of second course</td>
<td>Change of mental status</td>
<td>1. Purulent meningitis 2. Multiple infarcts</td>
<td>Autopsy</td>
<td>Died</td>
<td>Enhancement of basal cisterns and leptomeninges of brain and spinal cord on T1 with Gd</td>
<td>Multiple low densities in bilateral basal ganglia and right temporoparietal and occipital lobe</td>
</tr>
<tr>
<td>Patient No.</td>
<td>Age/Female/Male</td>
<td>Diagnosis</td>
<td>Treatment</td>
<td>Course</td>
<td>Symptoms</td>
<td>Radiological Findings</td>
<td>Laboratory Findings</td>
<td>Outcome</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>----------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9/F ALL</td>
<td>7.5/6 d</td>
<td>Seizure</td>
<td>1. Occipital hemorrhagic infarct
2. Meningitis
3. Meningeal leukemia</td>
<td>Died
Leptomeningeal enhancement on T1 with Gd; gyriform low signals in bilateral occipital lobe on T2; ventricular dilatation</td>
<td>Gyriform high densities in bilateral occipital lobe; ventricular dilatation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11/F ALL</td>
<td>6.5/during second course</td>
<td>Change of mental status, fever</td>
<td>1. Cerebral hemorrhage
2. Presumed candidiasis</td>
<td>Improved
Scattered hyperintense rimlike nodules in brain on T1 that were enhanced on T1 with Gd and mixed hyper- and hypointensity on T2</td>
<td>Multiple enhancing nodules in brain; hematoma in R basal ganglia; disseminated tiny hypodensities in liver, spleen, and kidneys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13/M AML</td>
<td>12.5/during second course of chemo</td>
<td>Fever, headache, vasomotor instability</td>
<td>1. Vascularopathy
2. Presumed fungal infection</td>
<td>Improved
Disseminated enhancing nodules in brain on T1 with Gd; the signal of nodules was inconspicuous on T1 and T2</td>
<td>NP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7/M ALL</td>
<td>4/3 mo</td>
<td>. . .</td>
<td>Mucomycoma, R temporal lobe</td>
<td>Biopsy
Died
R temporal lobe mass hypointense on T1, rim enhancement on T1 with Gd and hypointense on T2</td>
<td>Calcification of bilateral basal ganglia; irregular rim-enhancing mass in R temporoparietal lobe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>9/M ALL</td>
<td>2/5 y</td>
<td>Acute loss of vision, L limb weakness, headache, vomiting</td>
<td>1. MA
2. DL
3. GBM, R temporoparietal lobe</td>
<td>Biopsy
Died
Irregular rim-enhancing mass in R temporoparietal lobe on T1 with Gd; HS in periventricular WM on T2</td>
<td>. . .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12/M ALL</td>
<td>6.5/5.5 y</td>
<td>Seizure</td>
<td>1. MA
2. DL
3. Anaplastic astrocytoma, R frontal lobe</td>
<td>Biopsy
Died
Rim-enhancing mass in R frontal lobe on T1 with Gd; HS in periventricular WM on T2</td>
<td>Symmetrical subcortical calcification of bilateral frontal and occipital lobes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>11/M ALL</td>
<td>6.5/4 mo after last BMT</td>
<td>Acute mental status change</td>
<td>Multiple B-cell lymphomas in R cerebellum and L basal ganglia and L frontal lobe</td>
<td>Biopsy
Died
Unenhancing hypointense masses in R cerebellar hemisphere, L basal ganglia, and L frontal lobe on T1 with Gd and T2</td>
<td>Unenhancing hyperintense masses in R cerebellar hemisphere, L basal ganglia, and L frontal lobe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3/M AML</td>
<td>1/1 y</td>
<td>Stroke, thrombocytopenia</td>
<td>1. Hemorrhagic infarct, R occipital lobe
2. Epidural chloroma at C-6</td>
<td>Biopsy
Enhancing epidural mass at C-6 level on T1 with Gd; gyriform low signals in R occipital lobe on T2</td>
<td>Gyriform high density in R occipital lobe</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table—continued

<table>
<thead>
<tr>
<th>Case</th>
<th>Age, /y</th>
<th>Sex</th>
<th>Leukemia Type</th>
<th>Treatments†</th>
<th>Interval A/I‡</th>
<th>Symptoms and Signs</th>
<th>CNS Abnormalities</th>
<th>Autopsy, Biopsy, or CSF Study</th>
<th>Outcome</th>
<th>MR Findings</th>
<th>CT Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>21/M</td>
<td>ALL</td>
<td>RT, IT MTX, BMT</td>
<td>16/5 mo after BMT</td>
<td>Headache, thrombocytopenia</td>
<td>1. Spinal leptomeningeal leukemia</td>
<td>CSF cytology positive for leukemia</td>
<td>Died</td>
<td>Enhancement of cauda equina on T1 with Gd</td>
<td>Several cerebral and tentorial hematomas</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>7/M</td>
<td>ALL</td>
<td>RT, IT MTX, 6-MP, decadron</td>
<td>2/1 y after last therapy</td>
<td>Headache, change of mental status</td>
<td>1. MA 2. DL 3. Subdural hematoma</td>
<td>NP</td>
<td>Deteriorated</td>
<td>HS in bilateral basal ganglia and subcortical WM on T1 and HS in periventricular WM on T2; R occipital subdural LS on T1</td>
<td>Calcification of bilateral basal ganglia and subcortical WM, R frontotemporal subdural fluid collection</td>
<td></td>
</tr>
</tbody>
</table>

* Cases 1 to 12 are in group 1; cases 13 to 19 in group 2.
† Most treatment methods and drugs that were used in the last course of chemotherapy are listed.
‡ A indicates the age (years) when the diagnosis of leukemia was made. I indicates the interval between the last antileukemic treatment and the onset of neurologic symptoms.

Note—Adr = adriamycin; ALL = acute lymphoblastic leukemia; AML = acute myelogenous leukemia; APML = acute promyelogenous leukemia; ara-C = cytarabine; asp = asparaginase; BMT = bone marrow transplantation; chemo = chemotherapy; CHOP540 = Children's Hospital of Philadelphia protocol 540; dauno = daunomycin; dexa = dexamethasone; DL = diffuse necrotizing leuoencephalopathy; GBM = glioblastoma multiforme; Gd = gadopentetate dimeglumine; HS = high signals; IT = intrathecal; IV = intravenous; LS = low signals; MA = mineralizing arteriopathy; MRA = magnetic resonance angiography; MTX = methotrexate; NP = not performed; pred = prednisolone; RA = retinoic acid; RT = radiation therapy; SSS = superior sagittal sinus; T1 = T1-weighted images; T2 = T2-weighted images; T2* = T2* gradient-echo images; VCR = vincristine; VP-16 = etoposide; WM = white matter; 6-MP = 6-mercaptopurine; 6-TG = 6-thioguanine.
agulopathy that occurred during the first course of therapy. More recently, the use of all-trans retinoic acid to achieve remission in acute promyelogenous leukemia has reduced the rate of occurrence of coagulopathy in these patients (30).

One patient (case 3) had a reversible encephalopathy after intravenous methotrexate treatment for acute lymphoblastic leukemia (Fig 3). Clinical symptoms improved and follow-up MR imaging showed complete absence of the high-signal-intensity white matter abnormalities seen previously on T2-weighted images. A reversible encephalopathy in patients with acute lymphoblastic leukemia may occur with the use of intravenous methotrexate or high-dose cytarabine. White matter appears hypodense on CT scans (31) with corresponding high signal on T2-weighted MR images (19, 20). The histopathology of the white matter lesions remains unknown, although white matter edema or demyelination has been suggested (14, 20).

Bacterial or fungal infections associated with neutropenia are common in patients with newly diagnosed or recurrent acute leukemia (32, 33). Three of our five patients with CNS infections had persistent neutropenia. One patient (case 9) with purulent meningitis had enhancement of the leptomeninges of the basal surface of the brain and spinal cord on postcontrast T1-weighted MR images (Fig 6). A follow-up CT scan before death showed multiple infarcts resulting from infection-induced vasculitis, a finding verified at autopsy. Among the three patients with fungal infections, one (case 13) had pathologically proved cerebral mucormycosis. Isolated cerebral mucormycosis is uncommon and usually results from extension of preexisting infection by a species of *Mucor* in the nose or paranasal sinuses (rhinocerebral mucormycosis) (34, 35). A preoperative imaging diagnosis of cerebral mucormycosis is difficult. The hypointense signal intensity of the mucormycosis seen on T2-weighted images (Fig 15B) is not understood, although a recent study suggested that the low signal intensity of *Aspergillus fumigatus* on T2-weighted and gradient-echo MR images was caused by accrual of the paramagnetic substances, such as iron, manganese, magnesium, and zinc (36). Microbiological documentation of CNS fungal infection (cases 11 and 12) was not obtained, despite cultures from urine, blood, and CSF. In case 11, both CT and MR imaging revealed rimlike enhancing nodules in the brain (Fig 8), whereas abdominal CT scans showed disseminated unenhancing hypodense nodules in the liver, spleen, and kidneys, consistent with CNS and systemic candidiasis. The patient showed both clinical and radiologic improvement after empiric antifungal treatment with amphotericin. In case 12, the MR imaging findings of disseminated enhancing nodules in the brain and cerebellum (Fig 9) prompted open biopsy of the cerebral lesions. Microscopic examination together with several special stains of the brain specimens revealed abnormal thickening of the vessel wall and scattered infiltration of inflammatory cells but no fungus or bacteria. The patient was treated empirically for fungus, and the symptoms disappeared. Follow-up MR imaging showed complete resolution of the cerebral lesions. In some cases, MR imaging may be more sensitive than routine cultures in demonstrating anatomic evidence of clinically suspected CNS fungal infection and in monitoring the response to treatment.

CNS arachnoiditis may occur with intrathecal administration of chemotherapeutic agents such as methotrexate or cytarabine. Other causes of nerve root enhancement on contrast-enhanced MR images of patients with leukemia include postsurgical or postcontrast arachnoiditis (37), mechanical root compression with associated inflammation (37), cytomegalovirus polyradiculopathy in patients with acquired immunodeficiency syndrome (38), and inflammatory demyelinating polyradiculoneuropathy (39, 40). In our series, one patient with mixed lineage leukemia (case 8) treated with cytarabine had urinary retention, quadriplegia, and decreased deep tendon reflexes with MR enhancement of the nerve roots, although results of a meningeal biopsy revealed normal meninges. The clinical impression was inflammatory demyelinating polyradiculoneuropathy (Guillain-Barré syndrome), and the patient improved with intravenous immunoglobulin. Although patient 18 had the same MR findings of lumbosacral root enhancement, the cause proved to be leukemic relapse. Clearly, enhancement of the cauda equina in patients with leukemia warrants a vigilant search for the precipitating factor. Leptomeningeal enhancement of the brain in patients with leukemia may result from CNS relapse or infection (41, 42) or, rarely, both. Case 10 is an example of cerebral meningeal
enhancement resulting from both meningeal leukemia and bacterial meningitis (Fig 7) caused by *Acinetobacter anitratus*, which was proved with CSF cytology and CSF culture, respectively.

Before the advent of prophylactic treatment of childhood leukemia by means of CNS irradiation and intrathecal methotrexate, CNS leukemic relapse was high (2, 43). With the use of these presymptomatic therapies, survival rates increased. Unfortunately, the late effects of the prophylactic measures can result in mineralizing microangiopathy or arteriopathy, which is an injury to the small and medium-sized cerebral vasculature with calcium deposition often found in basal ganglia and subcortical white matter (6, 44, 45). Necrotizing leukoencephalopathy is characterized by a rapidly deteriorating clinical course and demyelination and necrosis of the periventricular white matter, and can be seen as early as 9 months after treatment with cranial irradiation and intrathecal methotrexate (7, 46). In our series, three patients (cases 14, 15, and 19) who had been treated with craniospinal irradiation and intrathecal methotrexate had mineralizing microangiopathy or arteriopathy and necrotizing leukoencephalopathy. Brain calcification was first noted on CT scans 3 years after initial treatment in case 15, and 4 years after treatment in cases 14 and 19. Distribution of the calcification included the subcortical white matter (case 15), bilateral basal ganglia only (case 14), and both white matter and basal ganglia (case 19), with periventricular hypodensity noted in all three patients. Mineralizing microangiopathy or arteriopathy appeared as high signal on T1-weighted images (Fig 14), a finding attributable to the surface relaxation mechanism of deposited calcium (47). Necrotizing leukoencephalopathy is typically low in signal intensity on T1-weighted images and high in signal intensity on T2-weighted images. These hyperintense T2 areas in the deep white matter also extend to more peripheral white matter.

The number of secondary malignant tumors that develop after therapy for acute lymphoblastic leukemia is 62.3 per 100 000 cases annually (48); the chance that a second tumor will develop in the CNS is even rarer (49). Although cranial irradiation (50) has clearly been implicated in the development of secondary brain tumors, cases of a second malignant tumor occurring in the CNS in survivors of childhood leukemia who had no history of prophylactic irradiation have been reported. Mechanisms such as loss of immune surveillance and genetic factors have been proposed (51). Glioma has been reported as the most common secondary brain tumor (52), followed by ependymoma, lymphoma, and meningioma. In our series, secondary brain tumors developed in three patients (cases 14, 15, and 16) 4.5 to 5.5 years after initial treatment. In two of these patients (cases 14 and 15; Figs 10 and 11, respectively), secondary gliomas developed in the setting of mineralizing microangiopathy or arteriopathy and necrotizing leukoencephalopathy. In the third patient (case 16), infected with Epstein-Barr virus after bone marrow transplantation, a primary CNS B-cell lymphoma developed 4 months after bone marrow transplantation. A second malignant tumor has been reported in connection with bone marrow transplantation (53). The occurrence of B-cell lymphoma after bone marrow transplantation or organ transplantation (54) may be the result of uncontrolled proliferation of B lymphocytes in an environment of immunosuppression. Epstein-Barr virus has been implicated in the lymphoproliferative process, which precedes malignant transformation (54, 55). These lymphomas appear hyperintense on plain CT scans and do not enhance after injection of iodinated contrast medium. The hyperdensity of the tumor masses seen on CT scans are believed to be due to hypercellularity of the tumor, a finding that was documented on microscopic examination in this case. MR imaging showed hypointense tumor signal on both T1- and T2-weighted images. The tumor did not enhance after intravenous administration of gadopentetate dimeglumine, a finding that is different from other primary or secondary CNS lymphomas, which typically enhance after contrast injection. The hypointense T2 signal of the tumors most likely also results from hypercellularity and a high nuclear/cytoplasm ratio of the tumors. These imaging characteristics might be useful in the differential diagnosis of the secondary CNS lymphoma after bone marrow transplantation for childhood leukemia.

Spinal chloroma was the initial sign of relapse in one patient (case 17) previously treated for acute myelogenous leukemia. The MR imaging findings of spinal chloroma are similar to those in the brain, in which signal is isointense with spinal cord on T1- and T2-weighted images,
and there is strong enhancement after intravenous administration of gadopentetate dimeglumine (Fig 13) (56). The epidural location of the tumor resulted in significant compression of the cervical cord. Spinal chloromas, estimated to account for 3% of all spinal tumors, are approximately as common as intracranial chloromas (57).

Summary

Neurologic complications of leukemia have increased with treatment advances and longer survival times. Improved neuroimaging techniques have helped characterize CNS abnormalities caused by direct leukemic involvement of CNS structures, cerebrovascular disorders, infections, treatment-related neurotoxicity, and second malignant tumors. Knowledge of risk factors may help in the early recognition of disease or treatment-related neurologic disorders, allowing for timely intervention.

References