Occult spontaneous lateral temporal meningoencephalocele: MR findings of a rare developmental anomaly.

J K Horky, J C Chaloupka, C M Putman and T C Roth

*AJNR Am J Neuroradiol* 1997, 18 (4) 744-746

http://www.ajnr.org/content/18/4/744

This information is current as of January 1, 2024.
Occult Spontaneous Lateral Temporal Meningoencephalocele: MR Findings of a Rare Developmental Anomaly

John K. Horky, John C. Chaloupka, Christopher M. Putman, and Toni C. Roth

Summary: We describe a case of an occult lateral temporal meningoencephalocele discovered in a 14-year-old boy during a work-up for minor head trauma. This spontaneous encephalocele resulted from a closure defect at the former sphenoidal fontanelle. Preoperative MR images are presented.

Index terms: Brain, hernia; Head, injuries; Temporal bone, abnormalities and anomalies

Temporal lobe meningoencephaloceles may develop spontaneously as congenital maldevelopments or they may occur subsequent to acquired processes, such as otologic infection, trauma, surgical defects, or neoplasms (1). Although autopsy studies have shown that congenital defects of the temporal bone occur frequently (2), spontaneous meningoencephaloceles of the temporal bone are rare. Among these, meningoencephaloceles projecting within the lateral temporal bone are the least frequent. Each patient we found reported in the literature (3–7) presented with a lesion that was overt at birth or early in childhood. We report a particularly unusual lateral temporal meningoencephalocele that was occult until adolescence, when it was detected during imaging for minor head trauma.

Case Report

A 14-year-old boy struck his head during a fall from a bicycle, transiently experiencing both minor depression in level of consciousness and difficulty with his speech. Computed tomography and magnetic resonance (MR) imaging at another institution showed an acute, focal brain contusion and adjacent subdural hematoma. In addition, directly adjacent to the contusion was a soft-tissue lesion within the left temporal calvaria, which was reported to be an incidental congenital intradiploic epidermoid tumor. The patient was referred to our institution 3 months later for further evaluation.

On admission, the patient described intermittent headaches, suggestive of postconcussion syndrome. He was alert and oriented, spoke without difficulty, and had no neurologic deficits. An area of irregularity was palpable in the left temporal region.

Subsequently, thin-section, high-resolution MR imaging was performed, which showed a 10-mm defect within the anterior squamosal portion of the left temporal bone, through which both dura mater and cerebrospinal fluid (CSF) were seen to project (Fig 1). A small mass with intermediate signal intensity on T1-weighted (500/25/1 [repetition time/echo time/excitations]) spin-echo images (Fig 1A) and high signal intensity on proton density–weighted (2000/30/1) and T2-weighted (2000/80/1) spin-echo images (Fig 1B and C) projected through the defect and was contiguous with the underlying temporal lobe. A small area of the underlying temporal lobe had similar signal intensity properties, suggestive of adjacent encephalomalacia or gliosis. These findings were consistent with a lateral temporal meningoencephalocele with probable encephalomalacia from prior trauma.

After group consultation and patient consent, a left temporal craniotomy was performed. Surgery confirmed the diagnosis of a congenital meningoencephalocele, in which a knob of encephalomalacic, herniated cerebrum was found protruding through a smoothly marginated, oval defect of the cranium bifidum. The encephalocele was resected and the calvarial defect repaired with titanium mesh and temporalis muscle. Pathologic evaluation of the resected specimen showed gliosis and hemosiderin deposition. The patient had no complications from the procedure. After a brief postoperative course, he was discharged home in excellent condition, with no deficits evident on his neurologic examination.

Discussion

A cranium bifidum, or meningoencephalocele, is a gap in the skull with herniation of adjacent meningeal and brain substances. Meningoencephaloceles can result from various
acquired processes, including infection, trauma, surgical damage, and neoplasms (1). Meningoencephaloceles, which develop in the absence of such acquired processes, are congenital or early postnatal maldevelopments termed spontaneous meningoencephaloceles (8). These spontaneous lesions usually occur at the site of a cranial suture, and most are the result of a primary or secondary midline defect in closure of the neural tube (4). Nagulich et al (3) listed the most frequent sites of occurrence of spontaneous meningoencephaloceles as nasal, nasopharyngeal, buccal, nasoorbital metopic, interparietal, occipital, and suboccipital.

The majority of spontaneous meningoencephaloceles associated with the temporal bone fall within the category of spontaneous basal meningoencephaloceles, and they are classified according to the anatomic location of their basal temporal defect: anterior (a defect of the sphenoid wing), anteromedial (a defect of the anteromedial middle fossa), posteroinferior (a defect of the tegmen tympani), and anteroinferior (a defect of the anteroinferior middle fossa) (8). The present case illustrates a rare fifth, nonbasal subtype, termed a spontaneous lateral temporal meningoencephalocele.

Spontaneous lateral temporal meningoencephaloceles represent lateral closure defects of the neural tube at the pterion, a craniometric point corresponding to the former sphenoidal (or anterolateral) fontanelle, or the asterion, which corresponds to the former mastoid (or posterolateral) fontanelle. Embryogenesis of the temporal bone involves the development and union of its squamous, tympanic, petrosal, and styloid components (9). During the eighth week of development, the squamous component undergoes membranous ossification from a single center. Similarly, at 12 weeks, the tympanic ring arises from the fusion of four intramembranous ossification centers. In contrast, the petrosal and styloid components undergo endochondral ossification from 16 ossification centers. Both the pterion and asterion are points of late closure of the membranous cranium where squamous temporal bone forms beveled sutures with the greater sphenoid wing and membranous portions of the frontal, parietal, and supranuchal occipital bones (3–5).

The pathogenesis of spontaneous temporal meningoencephaloceles is unclear. Autopsy work by Åhrén and Thulin (2) showed that defects of the petrous temporal bone are common. In their randomized series, they found perforations of the tegmen tympani in 21% of patients, and a further 16% were noted to have only a thin
layer of cortical bone covering the pneumatic
cellulae of the tegmen tympani. In the absence
of infection or increased intracranial pressure,
however, the mechanism of meningoencephalic
herniation into the bony defect is controversial.
Using a rabbit model, Falconer and Russell (10)
showed that meningoencephaloceles may de-
velop initially as hematomas and cysts at sites
of contact of gray matter and bony cortex.
Some investigators have also suggested that
dural defects at the site of pacchionian bodies
and arachnoid granulations may play a role in
pathogenesis (1, 11). Referring specifically to
lateral temporal defects, Nagulich et al (3) con-
tended that the herniation results from an ec-
topic deposit of meninges into the fontanellar
island during the fetal stage.

We found approximately 15 lateral temporal
meningoencephaloceles reported in the litera-
ture (3–7). Among these cases, 14 herniations
occurred at the pterion and one at the asterion.
None of the lesions described was occult. In the
present case, the anterior location of the lesion
defines it as a herniation at the pterion. In all
these previously reported cases, the patients
had a mass or deformity at physical examina-
tion. As with other spontaneous meningoen-
cephaloceles, they appeared during infancy or
early childhood, after a period of gradual en-
largement. At presentation, the lesion is com-
pressible, fluctuant, nonpulsatile, and becomes
increasingly tense with crying. Other symptoms
common to congenital defect temporal menin-
goencephaloceles, such as CSF rhinorrhea or
otorrhea, progressive hearing loss, seizure ac-
tivity, and recurrent meningitis (1), have not
been described in cases of lateral defects.

In the present case, we found that multipla-
nar, thin-section MR spin-echo imaging pro-
vided an excellent three-dimensional definition
of the lesion that was useful for both diagnosis
and surgical planning. As with any meningoen-
cephalocele, diagnosis relies on the demonstra-
tion of a sac that is directly contiguous with the
subarachnoid space and that contains a com-
ponent of herniated cerebral. The herniated
brain tissue can have signal characteristics of
normal nervous tissue or, as in our case, in-
creased signal on sequences with long repeti-
tion times. MR imaging, with its capacity to
define and characterize the contents of the sac,
provided the information necessary to confi-
dently differentiate this lesion from epidermoid
tumors, leptomeningeal cysts, arachnoid cysts,
sinus pericranii, and lytic primary or metastatic
bone tumors that may occur in the same region.
MR imaging also provides the best method for
identifying any associated intracranial anomali-
ies. Meningoencephaloceles can be associated
with Chiari malformations, holoprosencephaly,
Dandy-Walker complex, aqueductal stenosis,
agenesis of the corpus callosum, and other mid-
line abnormalities (12).

In conclusion, occult congenital lateral tem-
poral meningoencephalocele needs to be con-
sidered in the differential diagnosis of a patient
with an incomplete bony defect at the pterion or
asterion with adjacent meningoencephalitic
herniation.

References
1. Kamerer DB, Caparosa RJ. Temporal bone encephalocele: diag-
nosis and treatment. Laryngoscope 1982;92:878–882
2. Åhre n C, Thulin CA. Lethal intracranial complications following
inflation in the external auditory canal in treatment of serous otitis
media and due to defects in the petrous bone. Acta Otolaryngol
1965;60:407–421
rosurg 1967;27:433–440
Neurochir 1971;25:231–240
5. Martinez-Lage JF, Gonzalez-Tortosa J, Poza M. Meningocele of
the asterion. Childs Brain 1982;9:53–59
6. Pascual-Castroviejo I. Encéfalomingoenigoceles. In: Pascual-Cas-
troviejo I, ed. Neuroligia Infantil. Barcelona, Spain: Cientifico-
Medica; 1983:188–190
de malformations congénitales observe´es a` Kinshasa (Zaire). J
8. Wilkins RH, Radke RA, Burger PC. Spontaneous temporal en-
Wright; 1989:109–110
10. Falconer MA, Russell DS. Experimental traumatic cerebral cysts
in the rabbit. J Neurosurg 1944;1:182–189
and temporal lobe epilepsy: developmental and acquired lesions
in the middle fossa. Neurology 1984;34:363–366
1982;25:161–172