Precise placement of sphenoidal electrodes via fluoroscopic guidance.

D S Fenton, G K Geremia, A M Dowd, M A Papathanasiou, W M Greenlee and M S Huckman

AJNR Am J Neuroradiol 1997, 18 (4) 776-778

http://www.ajnr.org/content/18/4/776

This information is current as of October 20, 2023.
Precise Placement of Sphenoidal Electrodes via Fluoroscopic Guidance

Douglas S. Fenton, Glen K. Geremia, Anne M. Dowd, Matilda A. Papathanasiou, William M. Greenlee, and Michael S. Huckman

Summary: Fluoroscopically guided placement of sphenoidal electrodes for the assessment of epileptiform activity in the mesial-basal-temporal lobes offers distinct advantages over standard techniques, such as more precision in placement, reduced likelihood of facial pain, and fewer complications (vessel perforation or nerve injury). We describe our instrumentation, technique, and results in over 40 patients.

Index terms: Seizures; Fluoroscopy; Sphenoid bone

The benefits of sphenoidal electrodes versus scalp electrodes and more invasive intracranial electrodes in recording epileptiform activity of mesial-basal-temporal origin have been well documented (1, 2). In many institutions, sphenoidal electrodes are placed blindly, without fluoroscopic guidance, into the infratemporal fossa with their tips positioned at various distances from the optimal target, the foramen ovale (3, 4). The electrodes are loaded onto a carrier needle. During blind placement, the needle is inserted through the skin at a point 3 cm anterior to the external auditory canal, beneath the zygomatic arch, and through the mandibular notch. The tip of the needle is advanced to a depth of 4 to 5 cm beneath the skin's surface or until the patient reports mandibular pain. In one study, the accuracy of blind placement of sphenoidal electrodes was checked radiographically in six of 17 patients (4). All 12 electrodes placed in these six patients fell short of the lateral border of the foramen ovale by distances ranging from 4 to 35 mm. Thus, neither depth nor mandibular pain proved to be a reliable end point for targeting. We describe a fluoroscopic technique for more precise placement of electrodes.

Technique

Patients are screened for coagulopathy 24 hours preceding the procedure, and informed consent is obtained. Bleeding times are obtained in addition to routine coagulation studies for patients being treated with valproic acid. Blood pressure, pulse, and oxygen saturation are monitored throughout the examination.

The required instrumentation consists of multistranded, 34-gauge, polytetrafluoroethylene-coated stainless steel wires (sphenoidal electrodes); a 3.5-in spinal needle; and a 25-gauge, 1.5-in needle. A 10-mL syringe containing buffered 1% lidocaine is also needed. The sphenoidal electrode/needle system is created by removing the spinal needle stylets and back-loading the exposed portion of the wire approximately 5 mm into the spinal needle (Fig 1A). With a multifilament electrode, it may be necessary to roll the exposed wire between the thumb and index finger before inserting the wire into the needle. The remainder of the wire is bent back along the outer surface of the needle and hooked into the notch of the needle hub (Fig 1B). Biplane digital imaging is preferred to allow quick needle adjustments, although a single-plane imager will suffice. The foramen ovale and foramen spinosum must be adequately visualized for accurate needle placement.

A pillow is placed under the patient’s shoulders to extend the head for optimal visibility of the foramen ovale in the anteroposterior plane. Submentovertex radiography and lateral positioning are used. A sterile field is created over a generous area of skin ventral to the external auditory canal, beneath the zygomatic arch, and through the mandibular notch. The tip of the needle is advanced to a depth of 4 to 5 cm beneath the skin’s surface or until the patient reports mandibular pain. In one study, the accuracy of blind placement of sphenoidal electrodes was checked radiographically in six of 17 patients (4). All 12 electrodes placed in these six patients fell short of the lateral border of the foramen ovale by distances ranging from 4 to 35 mm. Thus, neither depth nor mandibular pain proved to be a reliable end point for targeting. We describe a fluoroscopic technique for more precise placement of electrodes.
meningeal artery at the foramen spinosum and the gasserian ganglion at the foramen ovale. The optimal position is with the needle tip just anterior and lateral to the foramen ovale. The patient may experience transient pain in the ipsilateral face and jaw, and repositioning may be necessary if the pain persists. With the tip of the electrode/needle system anterior to the foramen ovale, the external portion of the wire is then compressed against the patient’s skin while the needle is removed, leaving the wire in position. Mild pressure with gauze may be necessary to control minor bleeding. The exposed wire is then gently looped and taped to the skin to prevent accidental movement or removal, and the procedure is repeated on the opposite side. Submentovertex radiography of the skull base confirms the position of the wires (Fig 4). In our experience, the electrodes are left in place until adequate seizure activity has been recorded. This period of time is usually less than 2 weeks.

Discussion

Fluoroscopic placement of sphenoidal electrodes may help detect seizure foci previously undetected by electrodes placed blindly. Kanner et al (4) performed a retrospective analysis
of 17 patients with pharmacologically intractable partial seizures in whom blind placement of sphenoidal electrodes failed to delineate the electrographic anterior-mesial-temporal focus (4). In nine of these 17 patients, a seizure focus within this region was discovered when sphenoidal electrodes were subsequently placed under fluoroscopic guidance.

Sphenoidal electrode placement under fluoroscopic guidance offers distinct advantages over the more commonly performed blinded procedure. Fluoroscopy allows more precise placement of the electrodes, resulting in greater sensitivity in the detection of mesial-basal-temporal lobe epileptiform activity. Under direct visualization, severe facial pain is unlikely, since the foramen ovale is avoided. Finally, potential complications related to vessel perforation or nerve injury are reduced. We noted no complications in our experience with bilateral, fluoroscopically guided sphenoidal electrode placement in over 40 patients.

References