The endolymphatic duct and sac.

W W Lo, D L Daniels, D W Chakeres, F H Linthicum, Jr, J L Ulmer, L P Mark and J D Swartz


http://www.ajnr.org/content/18/5/881.citation

This information is current as of September 2, 2023.
The Endolymphatic Duct and Sac


The endolymphatic duct (ED) and the endolymphatic sac (ES) are the nonsensory components of the endolymph-filled, closed, membranous labyrinth. The ED leads from the utricular and saccular ducts within the vestibule through the vestibular aqueduct (VA) to the ES, which extends through the distal VA out the external aperture of the aqueduct (Fig 1) to terminate in the epidural space of the posterior cranial fossa. Thus, the ED-ES system consists of components both inside and outside the otic capsule connected by a narrow passageway through the capsule (1). In nomenclature, the osseous VA should be clearly distinguished from the membranous ED and ES, which it transmits. The VA is visible on computed tomography (CT), and the undilated ED and ES with their stroma on magnetic resonance (MR) imaging.

Traditionally, anatomic texts have depicted the ED-ES system as a single-lumen tubular structure, with a long thin ED ending in a short, blunt, pouchlike ES (2–4). In recent years, computer-aided reconstructions of histologic sections have revealed a system far different in appearance (5) (Figs 2 and 3). The ED is, in fact, a short single-lumen tubule, only about 2 mm in length (6), whereas the ES is a much larger and highly complex structure of interconnecting tubules, cisterns and crypts (5, 7, 8) (Fig 4). Variously described as shaped like a spindle, a paddle, a sail, or even a Christmas tree (5, 9–11) (Figs 2 and 3), the ES is highly variable in size (12) and quite irregular in outline, especially distally (13).

The ED forms from the confluence of the utricular and saccular ducts (7) (Fig 3). Its proximal, mildly fusiform segment, the sinus, lies in a groove on the posteromedial surface of the vestibule (14), while its major portion is contained within the short, slightly upwardly arched, horizontal segment of the VA (6, 15). After entering the VA, the sinus tapers to its intermediate segment within the horizontal segment of the VA, and then narrows at its isthmus within the isthmus of the VA (13). The mean diameters of the ED, 0.16 × 0.41 mm at the internal aperture of the VA and 0.09 × 0.20 mm at the isthmus, are below the resolution of present MR imagers (Fig 6A). The corresponding measurements of the VA, 0.32 × 0.72 and 0.18 × 0.31 mm, also challenge the resolution of current CT scanners.

Distal to the isthmus of the ED begins the ES, which flares considerably transversely but thickens only slightly in its sagittal dimension. The proximal, intraosseous portion of the sac, lying within the transversely widening, vertical segment of the VA, is covered posteriorly by a thin scale of bone, the operculum. The distal, extraosseous portion of the sac rests on a fovea on the posterior wall of the petrous bone, between layers of dura (13) (Figs 5C and 6A). The middle portion of the sac can lie in or out of the aqueduct depending on the length of the VA. The distal end of the sac overlaps the sigmoid sinus in as many as 40% of the cases (12) (Fig 2). The extraosseous portion of the sac varies widely from about 5 to 7 mm in width to about 10 to 15 mm in length (12, 13). Its intraosseous portion also varies widely in size depending on the size of the VA, which normally measures some 6 to 15 mm in length, 3 to 15 mm in width, and up to 1.4 mm in sagittal dimension of external aperture (15–17). Thus the normal ES is of sufficient size to be outlined by high-quality
MR techniques, even though its internal architecture might not be resolved (11, 18) (Figs 5 and 6).

In lower animals, and in human fetuses and newborns of up to 1 year of age, the ES consists of a single lumen (19). In the human ES, beginning at about 1 year of age, tubularity develops rapidly and reaches adult complexity by 3 or 4 years of age (19). Oriented primarily longitudinally, the tubules of the ES are more complex in its proximal and middle portions, and more confluent distally (9). The middle portion of the ES, originally termed the “rugose” portion (pars rugosa) (20), is now called the tubular portion (pars canalicularis) by recent investigators, to describe its complex tubular pattern more accurately (5, 10) (Fig 4). The epithelial cells of the ED and ES can be flattened, cuboidal, or cylindrical (6, 9). The well-vascularized peri- ductal and perisaccular supportive tissue is loose (21) until it gradually condenses as the distal sac merges with the dura (13) (Fig 4). The ED and ES contain only small amounts of endolymph (6, 9, 22), and are not surrounded by a perilymphatic space. Furthermore, the stroma of the ED and ES is more voluminous than their endolymph-filled lumen (6, 9) (Fig 4). In contrast, the remaining portions of the membranous labyrinth are smooth-walled channels, filled with larger amounts of endolymph, lying along ducts of even greater amounts of perilymph, and surrounded by little stromal tissue. Thus, the T1 and T2 of the ES are shorter than those of the remaining labyrinthine structures (23). Compared with the content of the remaining labyrinth, the content of the VA has a higher signal intensity on more T1-weighted images, and a lower signal intensity on T2-weighted or free precession images (Figs 5 and 6).
The main arterial supply of the ED and ES appears to be the occipital artery (24). The paravestibular canaliculus, or accessory canal of the VA, is an often duplicated, diminutive bony canal that carries a vein from the vestibule, parallel to the VA (6, 16). Venous blood from the sac drains into this vein near the external aperture of the vestibular aqueduct and the sigmoid sinus (25). Studies suggest that the ED and ES perform both absorptive and secretory (7, 22, 26, 27), as well as phagocytic (28) and immunodefensive, functions (29).

Because of the steep angulation of the long axis of the ES, at approximately 70 degrees from the infraorbital–meatal plane (30), seeing the ES on transverse images requires multiple contiguous sections (Fig 5). Sagittal images show a larger portion of the ES on a single section than do transverse images (11, 31), and demonstrate the relationship of the ES to the operculum, the dura, and the sigmoid sinus to better advantage (Fig 6A). However, in addition to the steep inclination of the length of the ES, the width of the ES lies nearly parallel to the posterior petrous surface, at an angle of about 45° from the sagittal plane of the head. Thus, seeing the entire ES on a single section requires double oblique reformation, 70° from the infraorbital–meatal plane and 45° from the sagittal (11, 31) (Fig 6B).

The ES has long been recognized for its key role in the pathogenesis of labyrinthine hydrops, which manifests clinically as Meniere disease (32), a common malady that is difficult to diagnose and treat. The symptoms of Meniere disease, which include episodic vertigo, fluctuating hearing loss, and tinnitus or aural fullness, are
characteristic but nonspecific (33). Audiometric findings are of only supplementary value. With no specific test yet available, the diagnosis of Meniere disease is often imprecise. The efficacy of treatment, medical and surgical (34, 35), is sometimes difficult to evaluate because of the fluctuating natural course of the disease.

The osseous VA has been extensively studied with pleuridirectional tomography (17, 36–38) and CT (38–41) for its role in Meniere disease. Variations of the VA range from short tubular to well-developed fan-shaped structures (42). Narrower and shorter VAs (18) and smaller external apertures of the VA (43) are statistically correlated with Meniere disease, but the overlap between normal and diseased ears is too wide for this differentiation to be clinically useful.

Preliminary MR studies suggest that patients with Meniere disease often have a small or invisible ES (18, 23). Lack of visibility might correlate with the clinical course of the disease (44). In addition, enhancement after administration of contrast material might be seen in inflammation of the ED/ES (45). Nevertheless, relatively little normative MR data on the ES have been established. Furthermore, MR is still far from capable of showing Reisner’s membrane or directly demonstrating endolymphatic hydrops.

The large vestibular aqueduct (wider than 1.5 mm in midsagittal diameter) is the most common congenital inner ear anomaly detectable with CT (46–48). Unlike normal ESs, endolymph-filled large ESs protruding from the large VA are readily shown with MR (49), especially on T2-weighted images (50). In fact, very
large ESs can be recognized even on standard CT (51). However, MR imaging delineates both the intraosseous and extraosseous volumes of the ES more accurately. Furthermore, proton density- and T1-weighted MR images can help to evaluate the sac content (52).

Papillary cystadenomatous tumors can arise from the ES, and can occur bilaterally in von Hippel-Lindau disease (53, 54). They appear as retrolabyrinthine destructive masses of varying sizes (55–57). Characteristically, they show intratumoral bone spicules on CT, foci of heterogeneous intensities on MR, usually including precontrast hyperintensities on T1-weighted images, and hypervascularity on angiography (58).

Much more of the normal and pathologic anatomy and physiology of the ED and ES remains to be learned. A thorough understanding of the anatomy of the ED and ES and their relationship to the VA, the dura, the sigmoid sinus, and the remainder of the membranous labyrinth, coupled with proper use of the anatomic terms, will facilitate our interpretation of the MR images of the ES.

Fig 4. Photomicrograph of endolymphatic sac, transverse section in region of external aperture of vestibular aqueduct (hematoxylin-eosin, magnification ×63). The petrous bone is on top and the left. Note the large number of longitudinally oriented, cuboidal epithelium-lined tubules cut in cross sections, containing endolymph of light and dark staining properties. Several arterioles (two marked with arrows) and venules (one marked with curved arrow) lie in the abundant loosely areolar stroma, which merges gradually and indistinctly with the dense fibrous overlying and underlying dura at approximately the position of the open arrows. Towards the distal end of the sac not shown on this section, the tubules coalesce and become wider and fewer (courtesy of House Ear Institute, Los Angeles, Calif).

Fig 5. MR images of normal left ES. Steady-state gradient-echo sequence (23), 0.5-mm sections in transverse plane. A, B, and C are representative sections in order from superior to inferior.

A, At the level of the lateral semicircular canal (small arrows), this section transects the proximal intraosseous ES (large arrow) as it descends immediately posterior to the common crus (curved arrow). The very thin ED just medial to the common crus is not resolved. Other structures are the posterior semicircular canal (arrowhead), the superior semicircular canal (double arrowhead), and the internal auditory canal (open arrow).

B, At the level of the vestibule (open arrowhead), this section shows a segment of the distal intraosseous ES (large arrow). Other structures are the posterior semicircular canal (arrowhead) and the tympanic facial nerve canal (small arrows).

C, At the level inferior to the otic labyrinth, this section shows the fovea (arrows) immediately inferior to the external aperture of the vestibular aqueduct, on which rests the extraosseous ES, inseparable from dural layers. Other structures are the jugular bulb (arrowheads) and the cochlear aqueduct (thin arrow). Note that the normal vestibular aqueduct content is of lower signal intensity than are other labyrinthine structures and cerebrospinal fluid.
Fig 6. MR images of normal left ES, steady-state gradient-echo sequence, 1-mm sections; A is sagittal and B double oblique. The intracranial ES (arrow) is clearly seen between the common crus (curved arrow) and the external aperture (between two arrowheads). On A, the ES appears as a thin straight linear structure. On B, it appears as a narrow-based triangle that widens as it descends from medial to the common crus towards the posterior surface of the petrous bone. The ED is not seen on A or B. Other structures are the sigmoid sinus (black arrow), jugular bulb (three arrowheads), cochlea (interrupted arrow), posterior semicircular canal (arrowhead), superior semicircular canal (double arrowhead), internal auditory canal (open arrow), and cochlear aqueduct (thin arrow). The operculum covering the ES from the posterior fossa is unmarked. Note again that the normal vestibular aqueduct content is lower in signal intensity than that of other labyrinthine structures and cerebrospinal fluid.

References


45. Fitzgerald DC, Mark AS. Endolymphatic duct/sac enhancement on gadolinium magnetic resonance imaging of the inner ear: preliminary observations and case reports. Am J Otol 1996;17:603–606

46. Valvassori GE, Clemis JD. The large vestibular aqueduct syndrome. Laryngoscope 1978;88:723–728


50. Hamsberger HR, Dahlen RT, Shelton C, Gray SD, Parkin JL. Advanced techniques in magnetic resonance imaging in the evaluation of the large endolymphatic duct and sac syndrome. Laryngoscope 1995;105:1037–1042


