Hemimegalencephaly and focal megalencephaly in tuberous sclerosis complex.

P D Griffiths, S A Gardner, M Smith, C Rittey and T Powell

http://www.ajnr.org/content/19/10/1935
Hemimegalencephaly and Focal Megalencephaly in Tuberous Sclerosis Complex

Paul D. Griffiths, Sherrie-Ann Gardner, Mike Smith, Chris Rittey, and Tom Powell

Summary: We describe two children with complex cortical malformations as well as the typical intracranial manifestations of tuberous sclerosis complex. One child had hemimegalencephaly and the other had extensive focal megalencephaly. These cases are discussed in terms of the current concepts of cortical malformations.

Tuberous sclerosis complex (TSC) is a relatively common disorder affecting approximately one in 8000 children (1). The diagnosis is generally made on the basis of findings at clinical examination, and is often supported by a positive family history. Typical neuroradiologic features confirm the diagnosis, demonstrate the extent of the abnormality, and show unsuspected but associated disease (2). The four neuropathologic hallmarks of TSC are subependymal nodules (SEN), cortical tubers, subependymal giant cell astrocytomas, and a variety of white matter abnormalities (3). All these abnormalities have been described in terms of abnormal proliferation, migration, and organization of the neocortex. In this article we describe two children whose neuroradiologic findings showed extensive cortical malformations as well as the usual characteristics of TSC.

Case Reports

Case 1

This girl had a strong family history of TSC, with an affected mother and maternal grandfather. A maternal sibling had died at the age of 9 years with an “astrocytoma,” presumed to be giant cell astrocytoma associated with TSC. The patient’s seizures started at 7 weeks, but she lacked the cutaneous stigmata of TSC at that time. Left hemiplegia and severe learning disabilities became apparent. A CT study at 2 months showed a large right hemisphre, cerebral hemisphere, and lateral ventricle. Dense white matter calcification was present in the white matter of the medial frontal lobe, superior temporal lobe, and all of the occipital and parietal lobes. The cortex of the posterior half of the hemisphere was smooth and thick. Three subependymal areas of calcification were present on the left, situated at the foramen of Monro, the trigone, and the body of the lateral ventricle. MR imaging at 7 years of age (Fig 1) showed similar findings, confirming a right hemimegalencephaly and features of TSC. Pachygyria was confirmed in the posterior portion of the hemisphere, and showed some enhancement within the subjacent white matter after injection of contrast material. A hypoplastic right cerebral peduncle was noted. More extensive calcified SEN were shown on the surfaces of both ventricles, and typical cortical tubers were demonstrated: at least eight in the left hemisphere and four in the lateral part of the right frontal lobe, which was not severely affected by hemimegalencephaly. A diagnosis of hemimegalencephaly and definite TSC was made on the basis of one primary and two secondary criteria of Rouch et al (4) (see Table).

Case 2

This girl was the second of nonidentical twins born after a normal pregnancy. There was no family history of TSC and the first twin was healthy. Seizures started at 3 weeks of age, but after an initial good response to anti-epileptic treatment became uncontrollable. The patient had a left hemiplegia and was moderately delayed developmentally. A CT study at 2 months showed bilateral high-attenuation lesions at the foramina of Monro and extensive calcification within the right hemisphere (Fig 2A). MR imaging at 3 years (Fig 2B and C) showed multiple, bilateral periventricular lesions that were of low signal intensity on all sequences, consistent with calcified SEN. High-signal abnormalities were present on long-TR sequences in cortical gyri of both hemispheres, typical of the hypomyelination and gliosis seen with cortical tubers. In addition, there was a large region of heavily calcified white matter extending from the ventricular surface to an area of cortex with broad, thickened gyri (pachygyria). This involved the right temporal, parietal, and posterior frontal lobes with hyperintense signal in the surrounding white matter, probably representing gliosis. The adjacent cerebrum and ventricle were larger than those on the left.

A right perinsular hemispherectomy stopped her seizures completely and produced generalized improvement in alertness and communication. Pathologic examination of the specimen revealed abnormal neurons and glia, with marked disruption of cortical architecture with gliosis and prominent calcification. Numerous balloon cells were present, but there were no mitotic figures. A diagnosis of TSC (one primary, one secondary, and one tertiary feature) and focal megalencephaly was made on the basis of a focal transmantle dysplasia and hemispheric/ventricle enlargement.
Discussion

Our understanding of malformations of cortical development has improved because of a greater appreciation of the embryologic and genetic principles underlying those abnormalities. Advances in neuroradiology, particularly MR imaging, have also played a major role. One classification (5) of cortical malformations subdivides them into four groups: I, malformations due to abnormal neuronal and glial proliferation; II, malformations due to abnormal neuronal migration; III, malformations due to abnormal cortical organization; and IV, malformations not otherwise classified.

The two cases described in this article are most consistent with group I. Most authorities recognize that all the pathologic features of TSC are the result of abnormal cell proliferation, migration, and organization. This is due to the abnormal differentiation of primitive giant cells, which may show either neuronal or glial characteristics and a wide spectrum in between (6). In the one case in which histologic analysis was performed (case 2), abnormal giant neuronal and glial cells were found in the region of focal megalencephaly along with balloon cells. These are the typical findings of cortical tubers, and differentiation between the two would have been difficult without the imaging findings.

Hemimegalencephaly and focal transmantle dysplasia are considered to have similar origins. Our report shows overlap in this classification, as we have described two cases of confirmed TSC, one with hemimegalencephaly and one that could be classified as focal megalencephaly (see below) or focal transmantle dysplasia.

Hemimegalencephaly is an uncommon disorder
with pathognomonic neuroradiologic findings (7–9). Hemimegalencephaly may be isolated or occur with hemihypertrophic syndromes or phakomatoses. It is possible that hemimegalencephaly or focal megalencephaly may be misdiagnosed as tumor on imaging studies. The histologic distinction between tumor and megalencephaly can also be difficult, the appearances may be confused with low-grade glioma or as part of the ganglioglioma/gangliocytoma spectrum. In some situations, true neoplasia in hemimegalencephaly has been suspected (10). Features that may be useful in distinguishing megalencephaly from tumor are lack of mass effect, lack of edema, and no change on follow-up examinations.

Phakomatoses that have been associated with an increased frequency of hemimegalencephaly include linear nevus syndrome (11), hypomelanosis of Ito (12), neurofibromatosis type 1 (13), and Proteus syndrome (9). Less extensive forms of hemimegalencephaly, affecting only part of a hemisphere, have been called focal megalencephaly (14). MR imaging findings in a case of TSC with hemimegalencephaly have been reported previously (15). The diagnosis of TSC in that case was made by three secondary features (first-degree relative, cardiac rhabdomyoma, and noncalcified SEN). In that child, the unaffected hemisphere showed no abnormality on MR images.

The second case we describe in this report presents some problems with classification. Transmantine cortical dysplasia is defined by atypical cells, heterotopic neurons, and glia extending from the ventricular to the pial surface (5), and is a reasonable description of the findings in case 2. However, the increase in brain, along with the cortical dysplasia, leads to the classification of focal megalencephaly. A possible source of clinical confusion with TSC in the presence of seizures and hypopigmented lesions is hypomelanosis of Ito, which is associated with hemimegalencephaly (12). In addition, megalencephaly and periventricular tumors are described in linear nevus syndrome (16); however, both our cases can be classified as TSC on the basis of Roach’s criteria (4).

Conclusion

We have described two cases of TSC with cortical formation abnormalities not typically found in TSC. One of the children had hemimegalencephaly and the other had focal megalencephaly. Recent classifications of cortical malformations are valuable, but our findings show that the distinctions may not be clear in some cases.

Acknowledgment

We are grateful for the advice and opinion of W. R. Timperley, consultant neuropathologist, in his review of the pathologic specimen of case 2.

References

6. Braffman BH, Bilaniuk LT, Naidich TP, Altman NR, et al. MR imaging of tuberous sclerosis: pathogenesis of this phakomatosis,
use of gadopentetate dimeglumine and literature review. Radiology 1992;183:227–238