Recurrence acute transverse myelopathy associated with anticardiolipin antibodies.

A Campi, M Filippi, G Comi and G Scotti

http://www.ajnr.org/content/19/4/781

This information is current as of July 23, 2023.
Recurrent Acute Transverse Myelopathy Associated with Anticardiolipin Antibodies

Adriana Campi, Massimo Filippi, Giancarlo Comi, and Giuseppe Scotti

Summary: In three patients with recurrent episodes of acute transverse myelopathy, spinal MR imaging during each episode showed areas of hyperintensity on proton density- and T2-weighted images with inconsistent contrast enhancement. Cranial MR imaging, laboratory screenings, and CSF analysis showed only increased titers of anticardiolipin antibodies. Although a causative role in neurologic conditions has not been established conclusively, an association between these antibodies and acute transverse myelopathy and its recurrences cannot be ignored.

Recently, much attention has been paid to a possible relationship between antiphospholipid antibodies and such neurologic conditions as transient ischemic attacks, cerebral arterial and venous thrombosis, retinal occlusive disease, migraine headaches, Behc¸et syndrome, chorea, seizures, Guillain-Barré syndrome, optic neuropathy, and transverse myelopathy (1, 2). Acute transverse myelopathy may be idiopathic or secondary to viral diseases (3), vaccinations (4), acute disseminated encephalomyelitis (5), multiple sclerosis (MS) (6), vascular insults (7), systemic lupus erythematosus (SLE) (8), or spinal arteriovenous malformations (9).

The antiphospholipid antibody syndrome includes the anticardiolipin antibody (ACA) and the lupus anticoagulant antiphospholipid syndromes. These are acquired blood protein defects associated with recurrent venous and arterial thrombosis, repeated abortions, or thrombocytopenia. ACA syndrome is more common than the lupus anticoagulant antiphospholipid syndrome, with a ratio of 5 or 6 to 1 (10). Recurrent transverse myelopathy is uncommon and raises the possibility of SLE, MS, or spinal arteriovenous malformations, since it has been described in these conditions (2, 8, 9, 11–13). The three patients presented here all had similar findings: recurrent acute transverse myelopathy, abnormal spinal magnetic resonance (MR) patterns, and increased ACA values.

Case Reports

Case 1

A 24-year-old woman had back pain, ascending numbness, and weakness of her legs. She had had three similar episodes of myelopathy, once a year from age 24 to 27, in which there was paraparesis and a T-6 sensory level. Our first observation of this patient was during the second episode of acute myelopathy (Fig 1A–C). Serial cranial MR images and a cerebrospinal fluid (CSF) study were normal, and no oligoclonal bands were detected by electrophoresis. Collagen screening tests and antibodies to different pathogens were negative. ACA was increased (IgG, 20 IU/mL; normal values, 0 to 15 IU/mL), lupus anticoagulant antibodies were normal, and circulating immune complexes were increased (9.87 ng/mL; normal values, 0 to 5 ng/mL). There was no evidence of MS or other systemic disease.

Twelve months after her second episode, when steroid therapy was tapered, the cord showed no high signal and atrophy was present (Fig 1D). Thirteen months after the second episode, during this third episode of myelopathy, she again underwent spinal MR imaging (Fig 1E and F). At the final follow-up MR examination, some months after a fourth episode of myelopathy, the enhancement had completely disappeared. In the fourth year from the onset of disease, she experienced a right-sided acute optic neuropathy, which regressed completely after steroid treatment.

Case 2

An 11-year-old girl presented at onset with chorea and 1 year later with an episode of acute optic neuropathy. Symptoms in both episodes responded to steroid treatment. Then, when she was 13 years old, she had two episodes of acute myelopathy. During the first she had paraparesis, sensory loss, and paresis of the left arm. Findings at cranial MR imaging and CSF examination were normal. ACA was increased (IgG, 39 IU/mL; IgM, 31 IU/mL), and there was thrombocytopenia (70 000/mm³) and increased circulating immune complexes. Collagen screening tests and antibodies to different pathogens were negative. There was no evidence of MS or other systemic disease.

During the first episode of myelopathy, the patient was initially admitted to another hospital but after 20 days was transferred to our hospital, where she underwent spinal MR imaging (Fig 2A–C). The upper thoracic spinal cord (T-1 to T-5) was enlarged and showed an abnormal signal, without enhancement. After steroid therapy, all symptoms regressed.
After 5 months, she had another relapse, marked clinically only by paraparesis. Spinal MR findings were changed (Fig 2D–F): with focal enhancing areas in both the cervical and thoracic spinal cord (Fig 2G–J). She was treated with steroids and immunosuppressive therapy, and after 2 months again recovered completely. Cervical and thoracic findings improved, although a slight diffuse hyperintensity persisted throughout the upper thoracic spinal cord. Some enhancing and nonenhancing cystic areas persisted in the cervical cord (Fig 2K and L).

Case 3

A 25-year-old woman was examined during the second episode of myelopathy, marked by paraparesis, urinary retention, and a T6–7 sensory level. This episode was clinically similar to the first one from which the patient had completely recovered after steroid treatment. CSF was normal, ACA was increased (IgM, 45 IU/mL; IgG, 11 IU/mL), and circulating immune complexes were increased. Collagen screening tests and antibodies to different pathogens were negative. There was no evidence of MS or other systemic disease. Cranial MR images showed findings compatible with small-vessel disease. She had multiple small silent lesions that were hyperintense on T2-weighted images, located mainly in the subcortical white matter and corona radiata. Spinal MR imaging showed middle thoracic spinal cord lesions with enhancement and moderate atrophy (Fig 3A and B). After steroid treatment she recovered completely.

Discussion

Acute transverse myelopathy is usually considered a monophasic disease, although recurrences have been described (2, 3, 8, 11, 13). Characterized clinically by acute motor, sensory, and autonomic dysfunction of the spinal cord, acute transverse myelopathy can, however, be complete, with bilateral spinal cord disease, or partial, with unilateral spinal cord disease (14).
Spinal MR findings in our patients, were similar to those reported in lupus-related myelitis (7) or in myelopathies of unknown origin (15, 16). On follow-up MR examinations, these lesions can change their pattern from diffuse to focal and cystic areas or even disappear (8). The appearance of cystic necrotic areas was not associated with a poor prognosis or greater disability. Widening of the spinal cord may be prominent during the first episode of acute transverse myelopathy; however, the presence of cord widening and prolonged abnormal signal on MR images was not associated with more severe disability or with a poor prognosis (8, 13, 15, 16). Development of atrophy over time (8, 17), such as in case 1, was, however, associated with only partial recovery of neurologic functions. Contrast enhancement, always observed during relapses and sometimes also during remissions, was homogeneous and either diffuse or focal.

The antiphospholipid syndromes, lupus anticoagulant and ACA, can both be secondary. They have been reported in many conditions, such as SLE or other autoimmune disorders, such as thrombocytopenic purpura, leukemia, cancer, and infections, or in subjects receiving phenytoin, hydralazine, and other drugs. The antiphospholipid antibody syndromes may also be primary, and in fact have been found in otherwise healthy subjects (1). ACA syndrome is associated with premature cerebrovascular diseases, migraine, Behçet syndrome, chorea, seizures, and myelitis. Both arterial and venous thrombosis may be
associated with ACA. Arterial thrombotic sites are many, including the coronary arteries, cerebral arteries, distal and proximal aorta (1), spinal arterial system (17), and subclavian, mesenteric, and peripheral arteries (18). Venous thrombotic events can involve deep veins of the arms and legs, intracranial dural sinuses, cerebral and retinal veins (1), pulmonary vein, inferior vena cava, and hepatic (19, 20), portal, or renal veins (1).

In our patients with relapsing transverse myelopathy, the main concerns were the nature and pathogenesis of the spinal cord lesions. Several mechanisms of action have been proposed by which ACA could induce thrombosis. ACA has an affinity for phospholipids and may interfere with the activity of several components of the normal hemostasis system, which depends on phospholipids. ACA can interact with endothelial release of prostacyclin or with activation of cofactors of hemostasis, such as protein C or protein S; they can interfere with antithrombin activity or with platelet membrane phospholipids (inducing platelet activation), with endothelial plasminogen activator release, or with activation of prekallikrein to kallikrein (1).

The endothelial cells are sensitive to both hemodynamic and humoral factors that can trigger the secretion of endothelium-derived substances that influence vessel tone and structure. This process involves cell growth, cell migration, and extracellular matrix modulation (21). Antiphospholipid antibodies might also interfere with vascular remodeling, which could well explain the pathologic findings.

In a clinical and pathologic study on neurologic diseases associated with antiphospholipid antibodies,
further supports the concept that the weak vascular-veins could become thrombotic or fibrotic (28). This dissection studies have shown that thoracic radicular nation in the thoracic cord. Moreover, some routine system, there is a tendency for engorgement or stag-
tion (27). In view of the number of transmedullary lesions in the other patients suggested venous involve-
ment with venular thrombosis or venous focal conges-
tion (26). The locations of the cord. However, this location is seen in both arte-
rinal and venous infarcts (25). All our patients are no important arterial hemodynamic consequences
and medium-sized vessels with luminal occlusion (23) or endothelial hyperplasia. Most vascular occlusions
appeared to be intracranial (22, 23).

Some authors have stated that the upper and midthoracic spinal cord regions are at high risk for vascular insufficiency, since they have few major ar-
terial suppliers and the anterior spinal artery is very thin (24); however, even if the anterior spinal axis is
discontinuous, particularly at the thoracic level, there are no important arterial hemodynamic consequences
secondary to that configuration (25). All our patients had thoracic lesions whose location was not always compatible with arterial infarcts, probably except for
 case 1, in whom the T6–8 lesion was in the center of the cord. However, this location is seen in both arte-
rinal and venous infarcts (26). The locations of the lesions in the other patients suggested venous involve-
ment with venular thrombosis or venous focal congestion (27). In view of the number of transmedullary
anastomoses and the triplication of the longitudinal system, there is a tendency for engorgement or stagn-
ation in the thoracic cord. Moreover, some routine dissection studies have shown that thoracic radicular
veins could become thrombotic or fibrotic (28). This further supports the concept that the weak vascular-
ization of the thoracic cord may be related to its venous rather than to its arterial arrangement (25).

There is a significant association between CNS in-
volvement in SLE and the presence of antiphospho-
lipid antibodies (lupus anticoagulant and/or ACA)
(29–31). In SLE, these antibodies are associated with
the development of transverse myelopathy and ocular
vasoocclusive phenomena (2, 23, 32). Like SLE pa-
tients (2), two of our patients (cases 1 and 2) had acute episodes of optic neuropathy. The pattern of visual loss in both was atypical for primary demyeli-
nating optic neuritis: there was no associated pain on
oculomotor movements and MR images of optic nerves
obtained with fat-saturated sequences and after ad-
ministration of contrast material were normal during
the acute phase.

Transverse myelopathy is uncommon as a first
manifestation of SLE (8, 33, 34). Moreover, previous
studies have shown ACA in different neurologic dis-
eases but rarely in MS (35). We could postulate a
diagnosis of SLE or MS for our patients, but they did
not entirely meet all the diagnostic criteria for SLE
(36) or for definite MS (37). We diagnosed primary
antiphospholipid syndrome according to the criteria
established by Harris (38), but it is still not clear
whether antiphospholipid antibodies are related to
the pathologic condition or are merely a result of
abnormal immunologic status. These antibodies
might in fact be considered consequences not causes
of a disease involving immunoregulatory dysfunction.

\section*{Conclusion}

Our patients, with elevated ACA values, had recur-
rent episodes of acute myelopathy with the following
spinal MR patterns: widening of the cord with signal
abnormalities, elongated morphology of lesions ex-
tending to multiple segments and frequently to a
thoracic location, enhancement during relapses, and
development of atrophy over time. It is still uncertain
whether ACA is causative in acute transverse myelop-
athy and its recurrences or simply an epiphenomenon
of endothelial injury, which can arise in many abnor-
mal clinical conditions.

\section*{Acknowledgments}

We thank Clodoaldo Pereira and Luigi Serra for their useful cooperation in performing most of the scans in this study.

\section*{References}

3. Jelfy DR, Mandler RN, Davis LE. Transverse myelitis: retrospective analysis of 33 cases, with differentiation of cases associ-
4. Shymalan NC, Singh SS, Bisht DB. Transverse myelitis after vac-
5. Kesselring J, Miller DH, Robb SA, et al. Acute disseminated en-