Intracisternal Hemorrhage of the Middle Fossa
Arachnoid Cyst and Subdural Hematoma Caused by Ruptured Middle Cerebral Artery Aneurysm

Dong Huang, Toshi Abe, Kazuyuki Kojima, Norimitsu Tanaka, Mitsuo Watauabe, Akio Ohkura, Hiroshi Nishimura, Naofumi Hayabuchi and Alexander M. Norbash

http://www.ajnr.org/content/20/7/1284
Intracystic Hemorrhage of the Middle Fossa Arachnoid Cyst and Subdural Hematoma Caused by Ruptured Middle Cerebral Artery Aneurysm

Dong Huang, Toshi Abe, Kazuyuki Kojima, Norimitsu Tanaka, Mitsuo Watauabe, Akio Ohkura, Hiroshi Nishimura, Naofumi Hayabuchi, and Alexander M. Norbash

Summary: We report a case of a cerebral aneurysm arising from the bifurcation of the left middle cerebral artery that ruptured into a left middle cranial fossa arachnoid cyst, associated with acute subdural hematoma. We discuss the relationships of aneurysm, arachnoid cyst, and subdural hematoma.

The most common cross-sectional imaging finding expected with aneurysm rupture is ordinarily subarachnoid hemorrhage. The intracranial cerebral arteries mostly are contained in the subarachnoid space; nevertheless, there are cases described in the imaging literature of ruptured aneurysm resulting in intracerebral parenchymal hematoma or subdural hematoma (1–3). We report a case of a cerebral aneurysm arising from the bifurcation of the left middle cerebral artery, which is associated not only with an acute subdural hematoma, but also suggests hemorrhage into a left middle cranial fossa arachnoid cyst.

Case Report

A 61-year-old woman came to the outpatient clinic of Koyanagi Memorial Hospital with an abrupt onset of a persistent mild headache. She underwent CT study, which showed a focal circumscribed hyperattenuating lesion in the left Sylvian fissure without associated mass effect (Fig 1). Of note, no specific evidence for subarachnoid hemorrhage was otherwise found. A thin left convexity and tentorial subdural hematoma also was diagnosed at this time. At this point, in light of the hyperattenuating focus in the left Sylvian fissure, MRI was performed for a more comprehensive study of the arachnoid cyst. The surgery at this point consisted of opening the arachnoid cyst uneventfully to the suprasellar cistern. The arachnoid cyst was confirmed at diagnostic angiography. MR imaging also confirmed bilaterally thin-convexity subdural hematomas (Fig 3D). MR angiography delineated a presumed left middle cerebral artery aneurysm located at the superior pole of the Sylvian fissure hematoma. Confirmatory diagnostic angiography was performed and an anteriorly projecting cerebral aneurysm was confirmed in the suspected location (Fig 4). Successful aneurysm clipping subsequently was performed via a left pterional craniotomy under general anesthesia. The craniotomy revealed subdural hematoma arising from the left temporal convexity and extending to the skull base, and there was also intraoperative demonstration of adhesion of sphenoid wing dura to the anterior wall of the arachnoid cyst. After dissection and removal of the firm hematoma in the arachnoid cyst, the dome of the aneurysm was exposed, and the aneurysm dome was shown penetrating the medial wall of the arachnoid cyst. The surgery at this point consisted of opening the arachnoid cyst uneventfully to the suprasellar cistern, and uncomplicated clipping of the aneurysm neck. The patient was discharged 2 weeks later without any neurologic deficits.

Discussion

Intracystic hemorrhage of the arachnoid cyst can occur spontaneously (4). Previous reports have described middle fossa arachnoid cysts with subdural hematoma (5–9). This combination of diseases has been explained conjecturally as possibly related to the unsupported blood vessels that can be found surrounding an arachnoid cyst, which are most likely veins, and to the fragile surrounding supporting stroma, or lack of it. These may bleed spontaneously or after relatively minor trauma. As a result of this relative fragility, the injury may result in subdural hematoma or intracystic hemorrhage or both (4–6, 8). Perhaps as supportive evidence of this conjectural explanation is the fact that the incidence of subdural hematomas associated with arachnoid cysts in the middle fossa is higher than in other locations (5). In seeking to explain this coexistence, the literature has
suggested that the described arachnoid cyst may enlarge over time as a result of expression/production of fluid from the cyst walls and therefore the possible ensuing increased pressure may rupture into the subdural space and manifest as a hematoma if there is also accompanying vascular disruption (1, 2, 7).

An alternative mechanism has been suggested to explain the coexistence of aneurysms and subdural collections. A ruptured aneurysm may adjoin an adherent arachnoid membrane and, as such, may bleed directly into the subdural space through a local tear in the arachnoid membrane resulting from increased intravascular pressure and leading to a decompressing rupture (1–3). An association between aneurysm rupture and arachnoid cyst is rare. Only three case reports were discovered of this association from a comprehensive review of the literature in spite of the high independent incidence of both processes. Two described cases were that of subarachnoid hemorrhage accumulating within an arachnoid cyst caused by a ruptured cerebral aneurysm (10, 11). The third case, and our presented case, described an aneurysm ruptured directly into the arachnoid cyst without definite subarachnoid hemorrhage (12).
It is our opinion that the aneurysm ruptured initially into the middle cranial fossa arachnoid cyst, leading to increased pressure in the arachnoid cyst. We believe that the high pressure of the arachnoid cyst may very well have leaked to the subdural space through closely opposed regions of arachnoid and dura, such as may be found in a region of arachnoid to dural adhesion. In summary, this is the first reported case of a cerebral aneurysm rupturing into an arachnoid cyst, with adjoining formation of an acute subdural hematoma, and underscores the myriad potential relationships between the extra-axial and intravascular spaces.

References