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BRAIN IMAGING

The AJNR has been at the forefront of the im-
aging revolution that has taken place over the past
20 years. It has served as one of the primary
sources for data critical to the progress of neuroim-
aging. I have chosen to categorize brain imaging
arbitrarily into several sections and summarize
some of the advances specifically related to our
journal. It has been an amazing 20 years!

Techniques

It was clear quite early in its course that MR
imaging could have a profound effect on the de-
piction of blood flow (1, 2). Indeed, Alvarez et al
(3) in 1986 first described the MR imaging ap-
pearance of the cessation of blood flow in the in-
ternal carotid artery. Among the many comparison
studies reported was that of Litt et al (4), who com-
pared conventional angiography with 2D time-of
flight (TOF) angiography. They observed good
agreement between the results of MR angiography
(MRA) and the standard of reference, conventional
angiography. These data began the implementation
of what is now the commonly accepted use of
MRA as a primary diagnostic tool for extracranial
occlusive vascular disease.

Ross et al (5) in 1990 compared intracranial
MRA with intra-arterial digital subtraction angi-
ography (DSA) for the evaluation of intracranial
aneurysms. They concluded that MRA could reveal
intracranial aneurysms as small as 3–4 mm and
was a promising method for noninvasive screening
of patients at risk for aneurysms.

Lewin and Laub (6) performed comparison stud-
ies of TOF techniques for intracranial MRA and
suggested tailoring intracranial MRA for maximal
diagnostic value. They also provided an analysis of
the difficulties associated with these techniques,
highlighting problems with slow flow on 3D TOF
studies. They confirmed what Ruggieri et al (7) re-
ported; ie, to maximize flow-related enhancement,
the imaging volume should be perpendicularly ori-
ented to inflowing blood, with an optimized flip
angle and TR. Additionally, to reduce signal loss
from flow-induced phase cancellation, constant-ve-
locity flow-compensation gradients, combined with
the shortest TE, could minimize intravoxel phase
dispersion. Thin sections with small voxels reduced
signal loss from phase shifts by limiting the effec-
tive range-of-motion–induced phase shifts across
the small voxel.

One of the first articles that reported the use of
fluid-attenuated inversion recovery (FLAIR) ap-
peared in the AJNR in 1992 (8). Harbingers of its
current use, the images clearly showed the utility
of the pulse sequence. In 1986, LeBihan (9)
showed that MR pulse sequences could be sensi-

tized to perfusion and diffusion. One of the earliest
and most exciting articles employing diffusion ap-
peared in the AJNR in 1990. In it, Moseley et al
(10), using an animal model of stroke, reported that
diffusion-weighted imaging was more sensitive to
early stroke than was conventional T2-weighted
imaging. Chien et al (11) extended these observa-
tions to patients with stroke and indicated that dif-
fusion imaging may improve tissue specificity and
enable differentiation between various types of tis-
sue damage. Tsuruda et al (12) in 1990 imple-
mented the technique to distinguish arachnoid cysts
from epidermoid tumors. In commentaries, Hen-
kelman (13) in 1990 noted that diffusion-weighted
MR imaging was here to stay, and Fisher and Sotak
in 1992 (14) concluded a new era for the very early
evaluation of ischemic cerebrovascular disorders
appeared to be dawning. These reports correctly
predicted the widespread use of diffusion-weighted
imaging as an important diagnostic tool.

Functional MR (fMR) imaging represents an im-
portant technique for enhancing our understanding
of how the brain works. Yetkin et al (15) reported
on the application of fMR imaging for noninvasi-
vely determining the proximity of eloquent brain to
focal lesions. Roberts and Rowley (16) argued that
a combination of magnetic source and fMR imag-
ing provided the best results for mapping the sen-
sorimotor cortex. Hedera et al (17) and Lee et al
in 1998 (18) reported unexpectedly negative re-
sults, failing to identify activated visual cortex and
motor cortex, respectively. An editorial by Bryan
and Kraut recognized the importance of these neg-
ative results, admonishing us to ‘‘be skeptical of
what [we] see and make nothing of what [we] don’t
see’’ (19).

It was clear rather early that contrast agents
would have a major role in the evaluation of brain
diseases. Claussen et al (20) in 1985 demonstrated
that tumor tissue could be differentiated from per-
ifocal edema with the use of noncontrast T2-
weighted imaging and that gadolinium would in-
crease the potential of MR imaging. Graif et al (21)
in the same year reported that comparison of MR
with CT showed a greater degree of contrast en-
hancement on MR images in a group of patients
with malignant cerebral tumors.

The technique for determining CBF by xenon-
enhanced CT, originally reported by Meyer et al in
1981 (22), has been subsequently discussed and
evaluated in a number of articles published in the
AJNR that sought to improve and validate the tech-
nique (23–25).

In 1992, Aoki et al (26) suggested that 3D CT
angiography (CTA) could be performed routinely
and was helpful for surgical planning by reveal-
ing the anatomy of cerebral aneurysms and sur-
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rounding structures. Evaluation of CTA in the
journal clearly aided in improving the method-
ology (27, 28).

Stroke and Hemorrhage

The diagnosis of acute stroke prior to MR im-
aging was based on the clinical presentation in con-
cert with a CT scan that excluded other pathology.
Using an acute stroke model, Brant-Zawadzki et al
(29) in 1986 reported the potential for increased
sensitivity with MR imaging. Bryan et al (30) re-
ported that MR imaging had increased sensitivity
for the early detection (within 24 hours) of cerebral
infarction and the better definition of the extent of
the infarct compared with CT. Yuh et al (31) in the
same issue of the AJNR argued that signal changes
may not be reliable within the first 8 hours and
observed that vascular abnormalities, when present,
were the most reliable and earliest findings. They
also theorized that morphologic changes and early
parenchymal enhancement preceded signal
changes. They indicated that paramagnetic contrast
medium might provide additional data for detection
and evaluation of acute ischemia. This confirmed
the reports of Elster and Moody (32, 33) identify-
ing arterial enhancement. Crain et al (34) embel-
lished the notion of enhanced MR imaging of ce-
rebral ischemia, reporting a variety of enhancement
patterns in the acute phase, which they concluded
reflected underlying pathophysiology and could
have prognostic significance.

Moody et al (35) found focal abnormalities in
terminal arterioles and capillaries among patients
and dogs who had undergone cardiopulmonary by-
pass. They proposed that these findings could be
the anatomic correlate of the neurologic deficits or
intellectual dysfunction seen in at least 24% of pa-
tients after cardiopulmonary bypass. With alkaline
phosphatase staining, they found acellular fatty ma-
terial in the microvasculature of patients who died
shortly after cardiopulmonary bypass (36). Stein-
berg et al (37), using MR and cerebrospinal fluid
enzymes, confirmed that brain damage can result
from cardiopulmonary bypass. In a commentary,
Moody (38) suggested that the heart surgery per-
formed at Stanford, under hypothermia with low
blood flow and continuous systemic blood pressure
in the 50- to 70-mm Hg range, may decrease the
microembolic injury to the brain.

In an elegant scientific investigation, Moody et
al (33) in 1990 studied vascular anatomy, employ-
ing a refined histochemical technique for alkaline
phosphatase that labeled the microvasculature and
preserved the background neuropil. They found six
different patterns of intraparenchymal afferent
blood supply to the brain, and suggested that some
of these patterns offered protection to certain brain
regions, while leaving others vulnerable in cases of
anoxia or hypoperfusion. The work provided an ex-
planation of variations in the brain’s response to
such injury.

The term leukoaraiosis was first used by Hach-
inski et al (39) in relation to periventricular white
matter hypodensities. Braffman et al correlated MR
findings of brain specimens with gross and micro-
scopic histopathology in an attempt to provide MR
criteria to differentiate lacunar infarction from Vir-
chow-Robin spaces (40) and elucidate the etiology
of white matter hyperintensity (41). Hendrie et al
(42) noted the correlation between foci of increased
intensity on T2-weighted images and aging unre-
lated to cognitive function or cerebrovascular risk
factors. Using xenon CT, Kobari et al (43) in 1990
measured local blood flow in a variety of patient
groups and concluded a correlation existed between
diffuse cerebral hypoperfusion, cognitive impair-
ment, and leukoaraiosis. Bryan et al (44) in a large
patient cohort found that the prevalence of subclin-
ical cerebrovascular disease reflected by MR im-
aging was of a magnitude greater than clinically
suspected, and that disease increased with age and
was more prevalent among blacks.

The term venous congestive encephalopathy was
proposed in the AJNR by Willinsky et al in 1994
(45) for patients who present with neurologic def-
icits caused by venous hypertension. Periventricu-
lar venous collagenosis with stenosis or occlusion
of deep cerebral veins has been associated with leu-
koaraiosis (46). Hurst et al (47) found that venous
hypertensive encephalopathy secondary to dural ar-
teriovenous fistulas could cause progressive de-
mentia. The journal has published its share of vas-
cular syndrome findings, including familial
arteriopathic leukoencephalopathy (48), primary
antiphospholipid sndrome (49), and leukoencephal-
opathy in cerebral amyloid angiopathy (50).

The significance of a hyperdense middle cerebral
artery (MCA) on CT has been thoroughly debated
in the journal (51–54). Bozzao et al (55) suggested
that the appearance of hypodensity revealed by CT
soon after embolism onset was strongly predictive
of hemorrhagic transformation. In an AJNR com-
mentary, Pessin et al (56) argued that the occur-
rence of hemorrhagic infarction alone does not nec-
essarily imply a serious complication. von Kummar
et al (52) expanded this outcome correlate and stat-
ed that early hypodensity on CT scans occuring
with acute infarction was a predictor of ischemic
brain damage. If it encompassed 50% or more of
the MCA territory, then there was an 85% positive
predictive value for fatal outcome.

Schwartz et al (57) used diffusion imaging to
indicate that the edema of hypertensive encepha-
lopathy (as seen in a variety of diseases, including
pre-eclampsia-eclampsia, lupus nephritis, and with
immunosuppressive drug therapy) has primarily va-
sogenic origin from lack of autoregulation. They
suggested that therapy should aim to lower blood
pressure and prevent hemorrhage. Nonaneurysmal
perimesencephalic subarachnoid hemorrhage was
first reported in 1985 by van Gijn et al (58). In
1991, CT and MR patterns differentiating this en-
tity from aneurysmal rupture was published in the
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AJNR (59) and correlated with an excellent
prognosis.

The complex MR appearance of hemorrhage
generated a great deal of discussion and controver-
sy since the initial publication of its imaging char-
acteristics at 1.5 Tesla (60) and the AJNR has been
an active forum for much of this discussion. Ed-
elman et al (61) employed gradient-echo imaging
to improve detection of susceptibility effects and
sensitivity to hemorrhage. Zimmerman et al (62) in
1988 illustrated the imaging appearance of acute
hemorrhage at 0.5 Tesla. The role of magnetic sus-
ceptibility in the appearance of hypointensity seen
on T2-weighted images was corroborated by a his-
tologic biochemical study in rats (63) and in vivo
magnetization transfer (MT) measurements (64).
Hayman et al (65) suggested the role of hemoglo-
bin immobilization by clot structure or red cell con-
traction in acute hematoma and disputed the results
of in vitro MT and relaxation rate measurements
(60). Janick et al (66) refined the understanding of
how various oxidation states of intracellular and
extracellular hemoglobin and protein concentration
contribute to the MR appearance of hemorrhage.
Boyko et al (67) described T1 shortening from pro-
cesses unrelated to hemorrhage (calcification and
laminar necrosis).

Infection and Inflammation
Braun et al (68) recognized that finding a ring

pattern on unenhanced CT scans could increase
specificity of the enhanced images, particularly re-
lated to structural lesions such as brain abscess.
MR features of pyogenic abscesses were reported
in 1989 and included edema, central necrosis, ex-
traparenchymal spread, and peripheral high inten-
sity on T1-weighted images (69). MR imaging was
reported to be superior to CT for detecting the full
extent of inflammation and assessing the resolution
of abscess. The journal reported the difficulties
with CT in the diagnosis of subdural empyema
(70), but by 1989 the diagnosis could be made ear-
ly and accurately with MR imaging (71).

By the early 1980s, it was known that HIV was
neurotrophic (72). The AJNR and other radiologic
journals (73–77) reported a plethora of imaging
findings in AIDS patients. Flowers et al (78) de-
termined that MR imaging was valuable for eval-
uating encephalopathy in AIDS patients. Cohen et
al (79) in 1992 noted that MR findings are normal
to minimally abnormal during early stages of HIV
infection, subtle neuropsychologic abnormalities do
not correlate with MR, and there may be a prom-
inence of adenoidal tissue in patients without op-
portunistic infections.

Wehn et al (80) in 1989 first observed dilated
perivascular spaces in cryptococcal infections, Tien
et al (81) and Mathews et al (82) extended the MR
observations regarding this AIDS-related infection,
including its lack of enhancement and underesti-
mation of the extent of disease. Coccidioidomy-
cosis was revealed to show widespread cisternal

and cervical meningeal enhancement and ventric-
ular enlargement (83). HIV patients were particu-
larly susceptible to brain abscess.

MT ratio (MTR) measurements proved useful for
distinguishing progressive multifocal leukoence-
phalopathy (PML) from HIV encephalitis (84).
PML had lower MTR values—much lower than
regions involved with HIV encephalitis. Thallium
201 brain single-photon-emission CT (SPECT)
could be employed in the imaging of AIDS patients
to differentiate CNS lymphoma from infectious le-
sions, such as toxoplasma encephalitis (85). In-
creased intense uptake was associated with lym-
phoma, whereas toxoplasma encephalitis had no
uptake. Kim et al (86) suggested that T1-weighted
imaging revealed that tuberculoma had hyperin-
tense and hypointense rims that corresponded to
collagenous fibers and inflammatory infiltrate, re-
spectively. The AJNR featured imaging findings of
many other infectious and inflammatory diseases,
including Wegener granulomatosis (87), Lyme dis-
ease (88, 89), chronic fatigue syndrome (90), neu-
rosyphilis (91, 92) aspergillosis (93), Whipple’s
disease (94), St. Louis encephalitis (95), Japanese
encephalitis (96), malaria (97) and Rocky Moun-
tain spotted fever (98).

White Matter Disease
Horowitz et al (99) reported that the ovoid lesion

on MR images might increase specificity for the
diagnosis of MS and that this lesion was the MR
correlate of ‘‘Dawson’s finger.’’ MS lesions could
have a diverse appearance, including rings on MR
images that are high-intensity with T1-weighted
imaging and low-intensity with T2-weighted im-
aging (100). T2 shortening was reported to be pres-
ent in MS patients in the thalamus, putamen (101),
cortex, and adjacent subcortical white matter (102).

Two investigations reported contrast enhance-
ment decreases over disease duration that reflect
clinical classification (103, 104). Grossman et al
(105) suggested that proton spectroscopy could
lead to better categorization of MS lesions than
contrast enhancement could and that demyelination
had a longer course than contrast enhancement.
Guttmann et al (106) characterized the temporal
evolution of MS lesions.

In an animal model of Wallerian degeneration,
Lexa et al (107) proved that application of the
MTR measure was more sensitive for the early de-
tection of degeneration than was conventional MR
imaging and that temporal changes revealed by the
MTR corresponded to histologic phases of Waller-
ian degeneration. The MTR was suggested to be a
robust measure (108) and reliable method for de-
termining MS lesion age (109). Hiehle et al (110)
drew attention to T1 hypointense lesions and their
low MTRs and concluded that, based on MTR data,
T1 hypointense lesions represented the most demy-
elinated MS lesions. Loevner et al (111) confirmed
this observation and suggested that T1-weighted
imaging might be useful for characterizing MS le-
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sions. van Buchem et al (112) combined a com-
puter software program and MT to produce global
MTR histograms for estimating whole-brain dis-
ease burden in MS. Phillips et al (113) reported that
the MTR histogram was a better indicator of global
disease burden than T2 was of lesion volume.

Metabolic and Toxic States
Xiong et al (114) reported the MR findings in

toluene abuse, including loss of gray-white matter,
periventricular white matter abnormality, decreased
size of the corpus callosum, and hypointensity in-
tensity in the thalami. Methanol can produce pu-
taminal necrosis and hemorrhage as well as periph-
eral white matter lesions (115) and other regions
involved in severe intoxication include the caudate
nucleus, pontine tegmentum, and optic nerves
(116). Ethylene glycol toxicity affects the thalamus
and pons (117). MR imaging reveals that organic
mercury poisoning (Minamata disease) affects the
calcarine area, cerebellum, and postcentral gyri,
and these regions are responsible for the character-
istic manifestation of the disease, including con-
striction of the visual fields, ataxia, and sensory
disturbance (118). Cyclosporin A produced revers-
ible changes in the occipital region (119).

Degenerative Diseases
In 1986, George et al (120) showed that leu-

koencephalopathy was linked to the aging process
and was observed in both ‘‘normal’’ and cognitive-
ly impaired individuals who had no other evidence
of vascular disease. De Leon et al (121), in a 3-
year longitundinal study of patients with Alzhei-
mer’s disease, found that changes in ventricular
size reflected clinical changes. Holodny et al (122)
reported that dilatation of the perihippocampal fis-
sures could be a sensitive and specific marker for
distinguishing Alzheimer’s disease from normal-
pressure hydrocephalus. Bradley et al (123) called
attention to the relationship between CBF and CSF
circulation and to the association of ischemic per-
iventricular lesions in patients with normal-pres-
sure hydrocephalus and in elderly patients with
communicating hydrocephalus. As would be ex-
pected, the results of these fresh ideas were debated
in the journal (124, 125).

The MR imaging appearance of acute lesions in
the Wernicke-Korsakoff syndrome, including re-
versible involvement of the dorsal medial thalamic
nuclei and periaqueductal region (126, 127), were
first described in the journal. Kato et al (128) used
MT measurements to detect pyramidal tract lesions
in amyotrophic lateral sclerosis.

The imaging findings in chronic acquired hepatic
failure (increased signal intensity in the basal gan-
glia, pituitary gland, and mesencephalon surround-
ing the red nuclei on T1-weighted images) were
characterized by Brunberg et al (129). We have
even seen the ‘‘eye-of-the-tiger’’ in Hallervorden-
Spatz disease (central hypointensity within a hy-

perintense rim surrounded by hypointensity on T2-
weighted images in the globus pallidus [130]).

Trauma

Several investigators (131–133) reported imag-
ing characteristics of extracerebral collections sec-
ondary to traumatic brain injury. McCluney et al
(134) called attention to the position of the cortical
veins in differentiating subdural hygroma from at-
rophy. In a blinded comparison of CT and MR im-
aging, Orrison et al (135) argued that CT and MR
were complementary in the evaluation of acute
head trauma. Gentry et al (136) reported that cor-
pus callosal injuries were more frequent than ex-
pected, with an associated high incidence of diffuse
axonal injury. Mittl et al (64), using T2*-weighted
imaging, found evidence of diffuse axonal injury
in some patients with mild head injuries in whom
CT findings were normal. They suggested that
these lesions might be responsible for some aspects
of the postconcussive syndrome. Blatter et al (137)
performed brain volumetric quantitation in trau-
matic brain injury, and suggested that these mea-
sures might be predictive of cognitive outcome.
Bigler et al (138) focused on hippocampal and tem-
poral horn volume and reported that, in the sub-
acute phase after brain trauma, the volume of the
temporal horn might correlate with intellectual out-
come and that of the hippocampus with verbal
memory function.

Pituitary Region

A number of investigators studied the pituitary
with CT and MR imaging and described its normal
appearance (139, 140), the changes in adolescents
and preadolescents (141), and the utility of con-
trast-enhanced MR imaging for localizing microad-
enomas (142–145). This small region has had more
than its share of reports and controversy. Mark et
al (146) in 1984 suggested that high intensity in the
posterior sella as shown on T1-weighted images
might represent fat. Fujisawa et al (147–149) the-
orized that the signal intensity was related to the
functional status of the hypothalamoneurohypophy-
seal axis and the signal was secondary to neuro-
secretory granules. Using phospholipid vesicles,
Kucharczyk et al (150) in an elegant experiment
modeled the signal intensity and concluded that the
MR imaging characteristics could be explained by
the phospholipid vessicles. Using fat suppression,
Mark et al (146) suggested that the high-intensity
signal could have more than one source.

Tien et al (151) proposed that MR imaging could
reveal central diabetes insipidus. Moses et al (152)
concluded that T1-weighted MR imaging might be
able to reveal the difference between central dia-
betes insipidus (absent posterior pituitary bright
spot) and primary polydipsia (bright spot present).
Lundin et al (153) reported serial changes in ma-
croprolactinomas resulting from long-term bromo-
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criptine therapy, including increasing T2 values
over time.

Dynamic MR imaging showed abnormalities of
the hypophysial vasculature in lymphocytic hypo-
hysitis (154). Using classical radiologic-pathologic
correlation, Sartoretti-Schefer et al (155) were able
to separate adamantinous MR findings from squa-
mous-papillary craniopharyngiomas, and Masayuki
et al (156) provided MR imaging criteria for the
diagnosis of Rathke cleft cysts.

Neoplasms
The detection of metastatic disease has received

considerable attention in the journal. In 1990, Sze
et al (157) recommended contrast enhancement for
the detection of brain metastasis. In 1992, Yuh et
al (158) suggested high-dose (0.3 mmol/kg) gado-
linium for detection of early or small metastases.
Higher contrast doses were judged to be better than
delayed imaging with standard contrast doses
(159). Sze et al (160) provided confirmation of the
beneficial effects of triple dose in cases of equiv-
ocal findings or solitary metastasis. In a commen-
tary in the AJNR, Ginsberg and Lang (161) argued
for postcontrast MT imaging rather than triple-dose
gadolinium. Elster and Chen in 1992 (162) con-
cluded that nonenhancing white matter abnormali-
ties have a low probability of representing meta-
static disease.

It would be too difficult to enumerate all of the
articles on particular brain neoplasms. Suffice to
say that the AJNR literature runs the spectrum from
investigations of astrocytomas (163) to xanthoas-
trocytomas (164). Proton MR spectroscopy was
deemed a reliable technique for grading gliomas
when combinations of metabolites were statistically
compared (165).

Complications of radiation injury to the brain
and the differentiation from recurrent or residual
tumor are important clinical issues. The journal
published an excellent review of this subject in
1991 (166, 167). Schwartz et al (168) suggested
that dual-isotope SPECT with 201TI and 99mTc-
HMPAO may be useful for differentiating sites of
tumor from radiation changes in patients treated
for malignant glioma. In a provocative paper, Ric-
ci et al (169) suggested that flurodeoxyglucose
(FDG) positron emission tomography (PET) may
not be as useful as previously indicated (170) for
differentiating recurrent tumor from radiation
necrosis.

Neuropsychiatry
The ability of MR imaging to define structural

abnormalities may elucidate behavioral abnormal-
ities. Andreasen in an AJNR commentary stressed
a new alliance between neuropsychiatry and neu-
roradiology (171). Degreef et al (172) detected an
increased prevalence of a cavum septum pelluci-
dum, cavum vergae, and partial callosal agenesis in
schizophrenics, suggesting that these might be an

important substrate in this disorder. Seidenwurm et
al (173) studied subjects with extremely violent be-
havior with FDG PET and found decreased tem-
poral lobe metabolism was correlated with limbic
abnormalities seen at electrophysiologic and neu-
ropsychiatric evaluation. Using MR spectroscopy,
Gonzalez et al (174) quantified brain lithium. They
found variability in brain versus serum levels
among patients with bipolar disease. Using fMR
imaging, Sunshine et al (175) studied patients with
attention deficit disorder. In this preliminary study,
they detected additional areas of activity in this pa-
tient cohort.

Epilepsy
Imaging findings in postictal patients include

transient cerebral swelling and enhancement
(167, 176). In a cohort of patients with histolog-
ically verified mesial temporal sclerosis, Meiners
et al (177) found increased hippocampal signal
intensity and decreased gray-white demarcation
in the temporal lobe to be the most specific MR
imaging features of this lesion. Oppenheim et al
(178) observed that complete loss of digitations
in the hippocampal head was a sensitive and spe-
cific marker of mesial temporal sclerosis. Cheon
et al (179) reported that visual assessment was
slightly superior to MR volumetry. Using patho-
logic confirmation as a standard of reference in a
large patient cohort with temporal lobe epilepsy,
Lee et al (180) found that MR imaging yielded
93% sensitivity and 83% specificity in detecting
hippocampal/amygdalar abnormalities. The pres-
ence of hippocampal atrophy correlated with the
duration of seizures.

The Future
Neuroradiology has been key in advancing our

understanding of the pathophysiology of disease
and improving the sensitivity to its detection and
extent as well as the specificity to particular patho-
gens. I am struck by how far we have come in the
past 20 years in elucidating neurologic diseases.
There is, however, still a long road ahead!

MR imaging has become the primary technique
for probing the brain and will continue to have
that role in the future. Molecular imaging with
various MR, SPECT, or PET probes may further
our understanding of brain metabolism and func-
tion. There is no question that we will have a
more profound understanding of how the brain
works as functional imaging becomes more
refined.

We will clearly move to faster imaging tech-
niques, stronger gradients, and higher field-
strength magnets. Resolution will improve, and
we may eventually evolve to image true in vivo
pathology. High-resolution spectroscopy will be
commonplace and that biochemical window will
be invaluable as a predictor of outcome. We will
use it to assess the effect of disease on the entire
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brain. Quantitative methods will readily enable
assessment of tumor or disease burden and treat-
ment outcome. These methods will make MR im-
aging a primary outcome measure in neurologic
disease.

It is critical that neuroradiology be substantive-
ly involved in the continued development of im-
aging science. Unless neuroradiology commits
itself to performing significant scientific investi-
gation, the specialty could be dismantled. Without
scientific progress, there will be no specialty. Oth-
er specialties have stronger commitments to basic
science and training programs are designed in part
to preparing physician scientists. We need to see
this as a challenge to our fundamental existence
and support all aspects of the science of
neuroimaging.

ROBERT I. GROSSMAN, M.D.
Senior Editor
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