This information is current as of October 28, 2023.

MR Digital Subtraction Angiography of Cerebral Arteriovenous Malformations

Kazuhiro Tsuchiya, Shichiro Katase, Ayako Yoshino and Junichi Hachiya

AJNR Am J Neuroradiol 2000, 21 (4) 707-711

http://www.ajnr.org/content/21/4/707
MR Digital Subtraction Angiography of Cerebral Arteriovenous Malformations

Kazuhiro Tsuchiya, Shichiro Katase, Ayako Yoshino, and Junichi Hachiya

BACKGROUND AND PURPOSE: Although phase-contrast MR angiography provides some information regarding hemodynamics of cerebral arteriovenous malformations (AVMs), most conventional MR angiographic techniques have not been helpful in this respect. We attempted to determine the value of MR digital subtraction angiography (DSA) in assessing AVM hemodynamics.

METHODS: We developed an MR DSA technique by combining rapid thick-section T1-weighted imaging with a bolus injection of contrast material. The temporal resolution was 0.56 to 0.61 seconds per scan. MR DSA images obtained from 14 patients with AVMs were reviewed. Anatomic depiction of each component of the AVM was rated using a four-point grading scale (excellent = 3, good = 2, fair = 1, poor = 0) to compare conventional vs MR angiograms.

RESULTS: We were able to obtain serial images in which passage of contrast material was evident within the AVM, although the sequence we used allowed images to be obtained in only one projection. The average score for feeders, nidi, and drainers was 1.6, 2.4, and 2.3, respectively, with an overall average of 2.1.

CONCLUSION: The spatial resolution of our technique may fall below the level needed for identification of small vascular components of an AVM. Additionally, the limited slab may restrict application of the technique to assessment of large or very small AVMs. MR DSA, however, can show the hemodynamics of AVMs and may serve as a supplement to conventional MR imaging in the diagnosis of cerebral AVMs.

Conventional angiography remains the standard of reference for the diagnosis of cerebral arteriovenous malformations (AVMs). Nevertheless, several MR angiographic techniques have been applied as less invasive means of diagnosis. Among them, a 3D phase-contrast technique (1–4) has been widely used, and a contrast-enhanced 3D time-of-flight (TOF) technique (5–7) has been another option. These MR angiographic techniques provide good depiction of the anatomic features of AVMs; however, they generate static images that do not allow assessment of the hemodynamics of AVMs. The status of flow through AVMs is believed to be one of the risk factors in predicting their propensity to hemorrhage (8, 9). Change of flow is also of clinical significance after endovascular or radiation therapy to evaluate the effect of treatment.

We developed an MR digital subtraction angiography (DSA) technique by combining rapid 2D T1-weighted imaging with a bolus injection of contrast material. Time-resolved contrast-enhanced 3D MR angiography is already available for the characterization of vessels of several regions (10–13); however, reports on the application of the 2D technique to the intracranial vasculature are limited (14, 15). Our 2D technique enables the acquisition of serial vascular images in a short time frame. The purpose of this study was to evaluate its usefulness in the assessment of hemodynamics of cerebral AVMs.

Methods

MR DSA images obtained from 14 patients with AVMs (seven men and seven women, 9 to 66 years old) were reviewed. The diagnosis of AVM had been established by conventional angiography (10 patients) or was suggested by MR imaging and MR angiographic findings, and later confirmed by conventional angiographic studies (four patients). Among the 14 AVMs, 10 were located in the cerebral hemisphere, two were in the cerebellum, and two were deep-seated (one in the basal ganglia and one in the thalamus).

MR DSA was performed on a 1.5-T imager using turbo fast low-angle shot (turbo-FLASH) sequences. The imaging parameters were as follows: TR/TE, 3.3–5.0/1.4–2.3; TI, 50–300; flip angle, 8–15°; imaging matrix, 80–119 × 128; section
thickness, 10–20 mm; field of view, 156–250 × 220–280 mm; scanning time, 0.56–0.61 seconds per scan; and scanning interval, 0.0–0.39 seconds. Using a power injector, we administered 0.1 mmol/kg of gadopentetate dimeglumine via the antecubital vein at a rate of 2 mL/s starting 0 to 5 seconds after initiation of scanning and continuing for 30 to 40 seconds. From these serial images, we selected a mask image and subtracted it from the images that followed by using the manufacturer’s standard system software incorporated in the imager.

We compared MR DSA images with conventional angiograms in 10 patients. In the remaining four patients, MR DSA images were compared with MR angiograms, because conventional angiograms obtained at other institutions were not available for comparison. MR angiography was carried out using contrast-enhanced 3D TOF sequences. Anatomic depiction of each component of the AVM was rated by consensus of two radiologists using a four-point grading scale (excellent = 3, good = 2, fair = 1, poor = 0). Grade 3 was scored when MR DSA depicted each component equally on conventional and MR angiograms, grade 2 when some details were absent on MR DSA images, grade 1 when MR DSA depicted only a part of each component of the AVM, and grade 0 when no part of any component was visible. The two radiologists independently reviewed images and scored them. When their ratings did not agree, a final judgment was reached by consensus. Interobserver concordance at the initial review was evaluated by the \(\kappa \) test.

Results

At the initial assessment of feeders, nidi, and drainers, the two observers’ ratings agreed in 11 (79%), 11 (79%), and 12 (86%) cases, respectively, with \(\kappa \) values of 0.74 (substantial reproducibility), 0.64 (substantial reproducibility), and 0.77 (substantial reproducibility), respectively.

In each case, we were able to obtain serial images in which passage of contrast material was seen within the AVM as well as in the surrounding normal vessels. Feeders, nidi, and drainers within the scanned section were identified separately. Arteries, however, frequently remained visible when veins were depicted. The average score for feeders, nidi, and drainers was 1.6, 2.4, and 2.3, respectively, with an overall average of 2.1.

Representative cases are illustrated in Figures 1 through 3.

Discussion

Three-dimensional phase-contrast MR angiography with a proper setting for velocity encoding has been widely used in the evaluation of cerebral AVMs (1–4). This technique can provide anatomic information as well as details on flow direction and velocity. Other methods used to assess AVMs effectively include the 2D phase-contrast technique with variable velocity encodings and a 3D TOF technique with or without multiple overlapping...
thin-slab acquisition. It has been reported that administration of contrast material is useful for visualizing AVMs with both phase-contrast and TOF techniques (3, 5–7, 16); however, these methods provide only static images of AVMs. Our goal in this study was to depict the hemodynamics of AVMs by using 2D turbo-FLASH sequences, which provide excellent temporal resolution.

Although they are not understood completely, the hemodynamics of AVMs are considered to be a risk factor for AVM hemorrhage, along with a history of bleeding, large size, deep venous drainage, and intranidal aneurysm (8, 9, 17). In relation to the hemodynamics of AVMs, it has been reported that feeding artery pressure is greater in a ruptured AVM than in an unruptured AVM (8, 9).
Meanwhile, large and high-flow AVMs are reported to be frequently accompanied by perioperative hyperemic complications (18–23). Therefore, assessment of flow plays an important part in the radiologic diagnosis of AVMs. In addition to characterizing flow dynamics, we hoped to be able to depict fine vessels with the use of the subtraction technique. Although the temporal resolution did not exceed that of conventional angiography, it was possible to identify the flow of contrast material through each component of the AVM. Thus, our results suggest that this application can be used to ensure the diagnosis of an AVM suggested at conventional MR imaging and MR angiography.

As compared with phase-contrast MR angiography, which can provide information about blood flow of AVMs (eg, flow speed and direction), our technique is advantageous in that AVM hemodynamics can be assessed visually. To our knowledge, there have been no reports of a technique similar to ours in which 3D data acquisition was used to evaluate intracranial AVMs or other vascular lesions. At present, the scan time per frame in 3D MR DSA limits its ability to assess physiologic information concerning AVM hemodynamics. Although not included in the present series, the use of subtraction seems to be quite effective in cases associated with hematoma. This is because misleading signals from hematoma are deleted and only those from vessels are displayed. MR DSA can also be of use in the follow-up period after embolization or radiosurgery of AVMs. Blood flow through an AVM can decrease after such therapies, with no significant anatomic change visible at angiography. We consider our technique to be valuable in the follow-up of hemodynamic changes because it is less invasive than conventional angiography.

Nevertheless, the technique has several limitations. First, spatial resolution is still inadequate, as evidenced by the low-average score for feeders, which are generally smaller than nidi and drainers. This concern may be a trade-off, considering the size of the imaging matrix in the phase-encoding direction. Application of more rapid imaging techniques, such as the partial Fourier method, could be effective in this regard. Second, the section thickness we used was 10 to 20 mm, which was inadequate to cover relatively large AVMs (Fig 3). But when thick sections are used, overlapping vessels may hamper visualization of the AVM’s details. Third, in our experience, arteries such as the carotid siphon frequently remained visible when veins were depicted (Fig 1). This probably hap-
CEREBRAL ARTERIOVENOUS MALFORMATIONS 711

ajnr: 21, april 2000

pened because the contrast material was not inject-
ed in an adequate bolus. We assume that this could
make the evaluation of hemodynamics with our
technique difficult as compared with the use of con-
ventional angiography. We consider further inves-
tigations necessary to evaluate the optimal dose
and rate of contrast material injection. Fourth, it
took more than 20 minutes to generate one series of
MR DSA images, because we had to perform sub-
traction by commanding the system for each frame.
We expect that postprocessing can be achieved
more easily and in a more timely manner in the
near future, as new software becomes available.

Conclusion

The MR DSA technique we developed has lim-
ited value at present in depicting the anatomic de-
tails of cerebral AVMs. It, however, can depict
AVM hemodynamics. We believe that MR DSA
could be a supplement to conventional MR imaging
in patients with cerebral AVMs at both initial di-
nagnoses and at follow-up after therapy.

References

1. Huston J III, Rufenacht DA, Ehman RL, Wiebers DO. Intracra-
nial aneurysms and vascular malformations: comparison of
time-of-flight and phase-contrast MR angiography. Radiolog-
y 1991;181:721–730
2. Marks MP, Pellec MJ, Ross MR, Erazman DR. Determination of
cerebral blood flow with a phase-contrast cine MR imaging
technique: evaluation of normal subjects and patients with ar-
CM, Edelman R, Turski P, eds. Clinical Magnetic Resonance An-
giography. New York: Raven; 1993:43–72
Usefulness of three dimensional phase contrast MR angiog-
raphy on arteriovenous malformations. Neurosurg Rev 1997;
20:171–176
5. Marchal G, Michiels J, Bosmans H, Van Hecke P. Contrast-en-
hanced MRA of the brain. J Comput Assist Tomogr 1992;16:
25–29
6. Runge VM, Kirsch JE, Lee C. Contrast-enhanced MR angiog-
7. Jung HW, Chang KH, Choi DS, Han MH, Han MC. Contrast-
enhanced MR angiography for the diagnosis of intracranial
vascular diseases: optimal dose of gadopentetate dimeglumine.
AJR Am J Roentgenol 1995;165:1251–1255
hemodynamic and anatomic factors on hemorrhage from ce-
rebral arteriovenous malformations. Neurosurgery 1994;34:
801–808
9. Spetzler RF, Hargraves RW, McCormick PW, Zarbramski JM,
Flom RA, Zimmerman RA. Relationship of perfusion pressure
and size to the risk of hemorrhage from arteriovenous mal-
formations. J Neurosurg 1992;76:918–923
1996;36:345–351
11. Levy RA, Prince MR. Arterial-phase three-dimensional con-
trast-enhanced MR angiography of the carotid arteries. AJR
Am J Roentgenol 1996;167:211–215
JH. Contrast-enhanced abdominal MR angiography: optimi-
zing of imaging delay time by automating the detection of
contrast material arrival in the aorta. Radiology 1997;203:
109–114
13. Foo TKF, Saranathan M, Prince MR, Chenevert TL. Automated
detection of bolus arrival and initiation of data acquisition in
fast, three-dimensional, gadolinium-enhanced MR angiog-
raphy. Radiology 1997;203:275–280
traction angiography using contrast enhancement, fast data
36:551–556
Nippon Acta Radiol 1999;59:203–205
16. Kesava PP, Turski PA. Magnetic resonance angiography of vas-
8:327–370
17. Pollock BE, Flickinger JC, Lunsford LD, Bissonette DJ, Kond-
ziolkia D. Factors that predict the bleeding risk of cerebral
18. Drake CG. Cerebral arteriovenous malformations: considera-
tions for and experience with surgical treatment in 166 cases.
Clin Neurosurg 1979;26:145–208
19. Wilson CB, U HS, Domingue J. Microsurgical treatment of in-
tracranial vascular malformations. J Neurosurg 1979;51:
446–454
20. Mullan S, Brown FD, Partonas NJ. Hyperemic and ischemic
problems of surgical treatment of arteriovenous malforma-
21. Bonnal J, Born JD, Hans P. One-stage excision of high-flow ar-
22. Day AL, Friedman WA, Sypert GW, Mickle JP. Successful treat-
ment of the normal perfusion breakthrough syndrome. Neu-
rosurgery 1982;11:625–630
The relevance of anatomic and hemodynamic factors to a clas-
sification of cerebral arteriovenous malformations. Neurosur-
gery 1991;28:370–379