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Glioma Grading: Sensitivity, Specificity, and
Predictive Values of Perfusion MR Imaging and

Proton MR Spectroscopic Imaging Compared
with Conventional MR Imaging

Meng Law, Stanley Yang, Hao Wang, James S. Babb, Glyn Johnson, Soonmee Cha,
Edmond A. Knopp, and David Zagzag

BACKGROUND AND PURPOSE: Sensitivity, positive predictive value (PPV), and negative
predictive value (NPV) of conventional MR imaging in predicting glioma grade are not high.
Relative cerebral blood volume (rCBV) measurements derived from perfusion MR imaging and
metabolite ratios from proton MR spectroscopy are useful in predicting glioma grade. We
evaluated the sensitivity, specificity, PPV, and NPV of perfusion MR imaging and MR spec-
troscopy compared with conventional MR imaging in grading primary gliomas.

METHODS: One hundred sixty patients with a primary cerebral glioma underwent conven-
tional MR imaging, dynamic contrast-enhanced T2*-weighted perfusion MR imaging, and
proton MR spectroscopy. Gliomas were graded as low or high based on conventional MR
imaging findings. The rCBV measurements were obtained from regions of maximum perfusion.
Metabolite ratios (choline [Cho]/creatine [Cr], Cho/N-acetylaspartate [NAA], and NAA/Cr)
were measured at a TE of 144 ms. Tumor grade determined with the three methods was then
compared with that from histopathologic grading. Logistic regression and receiver operating
characteristic analyses were performed to determine optimum thresholds for tumor grading.
Sensitivity, specificity, PPV, and NPV for identifying high-grade gliomas were also calculated.

RESULTS: Sensitivity, specificity, PPV, and NPV for determining a high-grade glioma with
conventional MR imaging were 72.5%, 65.0%, 86.1%, and 44.1%, respectively. Statistical anal-
ysis demonstrated a threshold value of 1.75 for rCBV to provide sensitivity, specificity, PPV, and
NPV of 95.0%, 57.5%, 87.0%, and 79.3%, respectively. Threshold values of 1.08 and 1.56 for
Cho/Cr and 0.75 and 1.60 for Cho/NAA provided the minimum C2 and C1 errors, respectively,
for determining a high-grade glioma. The combination of rCBV, Cho/Cr, and Cho/NAA resulted
in sensitivity, specificity, PPV, and NPV of 93.3%, 60.0%, 87.5%, and 75.0%, respectively.
Significant differences were noted in the rCBV and Cho/Cr, Cho/NAA, and NAA/Cr ratios
between low- and high-grade gliomas (P < .0001, .0121, .001, and .0038, respectively).

CONCLUSION: The rCBV measurements and metabolite ratios both individually and in com-
bination can increase the sensitivity and PPV when compared with conventional MR imaging alone
in determining glioma grade. The rCBV measurements had the most superior diagnostic perfor-
mance (either with or without metabolite ratios) in predicting glioma grade. Threshold values can
be used in a clinical setting to evaluate tumors preoperatively for histologic grade and provide a
means for guiding treatment and predicting postoperative patient outcome.

Prospective grading of primary cerebral gliomas is an
endeavor with many difficulties but with significant

clinical benefit. Despite recent advances in technol-
ogy, chemotherapeutic agents, radiation therapy op-
tions, and surgical techniques, few inroads have been
made into improving the survival of patients with
malignant gliomas. The mean survival rate remains
dismal, with fewer than 10% of patients with glioblas-
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toma multiforme alive after 2 years. Two major lim-
itations are associated with histopathologic grading of
gliomas: inherent sampling error associated with stereo-
tactic biopsy and inability to evaluate residual tumor
tissue after cytoreductive surgery. Malignant gliomas
are known to infiltrate the parenchyma following vascu-
lar channels of the white matter tracts (1). This may not
be readily appreciated if there is no signal intensity
abnormality or enhancement on conventional MR im-
ages. Hence, histopathologic grading of gliomas has
disadvantages and intrinsic error. The advantage of
state-of-the-art MR imaging techniques in evaluating
cerebral gliomas is the ability to sample not only the
entire lesion, but also the adjacent brain tissue for phys-
iologic and metabolite alterations.

Conventional MR imaging with gadolinium-based
contrast agents is an established and useful tool in the
characterization of cerebral tumors (2–6). Current
1.5-T clinical MR systems provide excellent anatomic
or morphologic imaging of gliomas. However, despite
optimization of sequences and protocols, the classifi-
cation and grading of gliomas with conventional MR
imaging is sometimes unreliable, with the sensitivity
for glioma grading ranging from 55.1% to 83.3%
(7–11). Kondziolka et al (10) demonstrated a 50%
false-positive rate in evaluating supratentorial glio-
mas.

Conventional MR imaging provides important in-
formation regarding contrast material enhancement,
perienhancement edema, distant tumor foci, hemor-
rhage, necrosis, mass effect, and so on, which are all
helpful in characterizing tumor aggressiveness and
hence tumor grade. Dean et al (8) determined that
mass effect and necrosis were the two most important
predictors of tumor grade. However, often a high-
grade glioma may be mistaken for a low-grade glioma
when it demonstrates minimal edema, no contrast
material enhancement, no necrosis, and no mass ef-
fect (Fig 1A and B). Conversely, low-grade gliomas
can sometimes demonstrate peritumoral edema, con-
trast material enhancement, central necrosis, and
mass effect and be mistaken for a high-grade glioma
(Fig 2A and B). Conventional MR imaging readily
provides evidence of contrast material enhancement,
signifying blood-brain barrier breakdown, which is
often associated with higher tumor grade. However,
contrast material enhancement alone is not always ac-
curate in predicting tumor grade. Ginsberg et al (12)
demonstrated that lack of enhancement of supratento-
rial gliomas does not equate with low-grade gliomas. In
another study, all low-grade tumors showed contrast
material enhancement, but almost one-fifth of glioblas-
toma multiforme tumors did not (11). The peritumoral
hyperintensity on conventional T2-weighted MR images

FIG 1. 20-year-old woman with biop-
sy-proved high-grade glioma.

A, Contrast-enhanced axial T1-
weighted image (600/14/1 [TR/TE/NEX])
demonstrates an ill-defined nonenhanc-
ing mass (arrow) in the right frontal re-
gion. The lack of enhancement on the
conventional MR image suggests a low-
grade glioma.

B, Axial T2-weighted image (3400/
119/1) shows increased signal intensity
in the mass, with minimal peritumoral
edema. This mass was graded as a low-
grade glioma with conventional MR im-
aging because of lack of enhancement,
minimal edema, no necrosis, and no
mass effect.

C, Gradient-echo (1000/54) axial per-
fusion MR image with rCBV color overlay
map shows increased perfusion with a
high rCBV of 7.72, in keeping with a
high-grade glioma.

D, Spectrum from proton MR spec-
troscopy with the PRESS sequence
(1500/144) demonstrates markedly ele-
vated Cho and decreased NAA with a
Cho/NAA ratio of 2.60, as well as in-
creased lactate (Lac), in keeping with a
high-grade glioma.
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is nonspecific, representing tumor infiltration, vasogenic
edema, or both. Moreover, conventional MR imaging
does not provide reliable information on tumor physi-
ology such as microvascularity, angiogenesis, metabo-
lism, micronecrosis, or cellularity, all of which are also
important in determining tumor grade (13–15).

Advanced MR imaging techniques such as perfu-
sion MR imaging and proton MR spectroscopy have
found increasing utility in studying brain tumors. Rel-
ative cerebral blood volume (rCBV) maps and mea-
surements have been shown to correlate reliably with
tumor grade and histologic findings of increased tu-
mor vascularity (11, 16–25). Recent reports regarding
MR spectroscopy support its use as a powerful tool in
tumor grading as well. Specifically, elevation in cho-
line (Cho) with depression of N-acetylaspartate
(NAA) is a reliable indicator of tumor. There is ex-
tensive literature demonstrating the metabolite ratios
of Cho/creatine (Cr), NAA/Cr, and myo-inositol/Cr
and the presence of lipids and lactate to be useful in
grading tumors and predicting tumor malignancy (7,
26–56). There is certainly compelling evidence that
MR spectroscopy provides important supplemental
information to that of conventional MR imaging. The
recent finding of a direct correlation between Cho
and Ki-67 levels or cellular proliferative activity pro-

vides objective confirmation of the potential of MR
spectroscopy in predicting tumor grade (57, 58).

To date, there have been some efforts to combine
perfusion MR imaging and MR spectroscopic tech-
niques in characterizing gliomas (59, 60). Investiga-
tors have also combined these two techniques to eval-
uate postoperative patients (61) or pediatric patients

FIG 3. ROC curves for rCBV plus metabolites, rCBV alone,
Cho/Cr, and Cho/NAA demonstrate superior sensitivity and
specificity of rCBV plus metabolites and rCBV alone compared
with conventional MR imaging (cMRI, green asterisk) for glioma
grading.

FIG 2. 43-year-old man with biopsy-
proved low-grade glioma.

A, Contrast-enhanced axial T1-
weighted image (600/14/1) demonstrates
a peripherally enhancing mass (arrow) in
the right frontal region. The presence of
contrast material enhancement on the
conventional MR image would suggest a
high-grade glioma.

B, Axial T2-weighted image (3400/
119/1) shows marked peritumoral edema
with possible necrosis and blood prod-
ucts. This mass was graded as a high-
grade glioma with conventional MR imag-
ing because of the contrast material
enhancement, heterogeneity, blood prod-
ucts, possible necrosis, and degree of
edema.

C, Gradient-echo (1000/54) axial per-
fusion MR image with rCBV color overlay
map shows a low rCBV of 1.70, in keep-
ing with a low-grade glioma.

D, Spectrum from proton MR spec-
troscopy with the PRESS sequence
(1500/144) demonstrates elevated Cho
and slightly decreased NAA with a Cho/
NAA ratio of 0.90, which is more in keep-
ing with a low-grade glioma.

AJNR: 24, November/December 2003 GLIOMA GRADING 1991



with brain tumors (62). Importantly, despite the nu-
merous reports and widespread interest in the char-
acterization of gliomas with these advanced MR im-
aging techniques, the current clinical role of rCBV
and metabolite ratios requires further determination
(63). There are surprisingly few reports in the litera-
ture describing the false-positive and false-negative
rates for glioma grading by using rCBV, metabolite
ratios, or both, compared with that for conventional
MR imaging. Defining the role of these advanced MR
imaging techniques in clinical practice, in terms of the
sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV), and determin-
ing whether perfusion MR imaging, MR spectros-
copy, or the combination of the two techniques is
more superior need further investigation.

We evaluated our experience in applying both of
these advanced techniques in the study of primary
cerebral gliomas and compared the sensitivity, speci-
ficity, PPV, and NPV of perfusion MR imaging and
MR spectroscopy in glioma grading with those of
conventional MR imaging. Our purpose was to pro-
vide objective data on the clinical utility of perfusion
MR imaging and MR spectroscopy in glioma grading
and also to proffer some quantitative guidelines for
distinguishing low-grade from high-grade gliomas.

Methods

Patients and Histopathologic Analysis
Approval for this study was obtained from the Institutional

Board of Research Associates, and informed consent was ob-
tained from all patients. Retrospective analysis of our database
of 728 patients who underwent conventional, perfusion, and
spectroscopic MR imaging yielded 160 patients who underwent
preoperative MR examinations and had histopathologic results
for comparison. The conventional MR imaging examinations
evaluated were all preoperative. One hundred seventeen pa-
tients received their perfusion and spectroscopic imaging be-
fore surgery and 43 patients after stereotactic biopsy or partial
resection, but the postoperative images demonstrated residual
contrast material enhancement. The MR examinations were
acquired from November 1999 to July 2002. The patients’ ages
ranged from 4 to 82 years, with a mean of 43 years. There were
108 male and 52 female patients.

Histopathologic evaluation was performed by an experi-
enced neuropathologist (D.Z.) and was based on a modified
Ringertz’s three-tier classification of gliomas (64): grade 1,
low-grade glioma; grade 2, anaplastic glioma; and grade 3,
glioblastoma multiforme. The imaging classification was di-
vided into two tiers. Anaplastic gliomas and glioblastoma mul-
tiforme were considered high-grade gliomas, and this group
comprised 120 patients. The low-grade gliomas group com-
prised 40 patients.

Conventional MR Imaging
Imaging was performed with a 1.5-T unit (Vision or Sym-

phony; Siemens AG, Erlangen, Germany). A localizing sagittal
T1-weighted image was obtained followed by nonenhanced
axial T1-weighted (600/14 [TR/TE]), axial fluid-attenuated in-
version-recovery (FLAIR, 9000/110/2500 [TR/TE/TI]), and T2-
weighted (3400/119) images. Contrast material–enhanced axial
T1-weighted imaging was performed after the acquisition of
the perfusion MR imaging data. Two experienced board-certi-
fied neuroradiologists (S.Y., E.K.), blinded to the perfusion
and MR spectroscopic results, reviewed the conventional MR

images and graded each tumor according to the two-tier imag-
ing grading system: low- versus high-grade gliomas. A consen-
sus was reached on the conventional grading of each lesion
based on eight criteria: contrast material enhancement, border
definition, mass effect, signal intensity heterogeneity, hemor-
rhage, necrosis, degree of edema, and involvement of the cor-
pus callosum or crossing the midline (8, 9).

Dynamic Contrast-Enhanced Perfusion MR Imaging
Dynamic contrast agent–enhanced T2*-weighted gradient-

echo echo-planar images were acquired during the first pass of
a standard dose (0.1 mmol/kg) bolus of gadopentetate dime-
glumine (Magnevist; Berlex Laboratories, Wayne, NJ). Seven
to 10 sections were selected for perfusion MR imaging through
the tumor based on T2-weighted and FLAIR images. The
methods for acquiring perfusion data from a set of dynamic
contrast-enhanced echo-planar images and the precise algo-
rithm for calculating rCBV have been previously described
(11). Data processing was performed by using a Unix worksta-
tion with analytic programs developed in-house by using C and
IDL programming languages. After construction of an rCBV
color map to target regions of maximal abnormality, four re-
gion-of-interest measurements were obtained, and the maxi-
mum rCBV was recorded. This method has been demonstrated
to provide the most optimal interobserver and intraobserver
reproducibility (65). The standardized region of interest, which
measured approximately 2–3 mm2, was used in most measure-
ments. The rCBV measurements were obtained by a neurora-
diologist (G.I.) experienced with perfusion data acquisition at
our institution, once again blinded to the conventional and MR
spectroscopic findings.

Proton MR Spectroscopic Imaging
Multivoxel 2D proton chemical shift imaging (CSI) or spec-

troscopic imaging was performed after administration of gado-
pentetate dimeglumine. This is the standard protocol at our
institution, as the literature seems to demonstrate that gado-
linium has a negligible effect on metabolite ratios and peak
areas (66–68). The volume of interest (VOI) was confirmed by
obtaining half-Fourier acquisition single-shot turbo spin-echo
images (5/6/500/1 [TR/TE/TI/NEX]). Ten sections with 5-mm
section thickness were obtained in 1 minute 15 seconds in the
axial, coronal, and sagittal planes for all patients. A volume
selective 2D CSI sequence with 1500/144 was used for MR
spectroscopic imaging. The hybrid multivoxel CSI technique
uses a point-resolved spectroscopy (PRESS) double spin-echo
sequence for preselection of a VOI that was usually defined to
include the abnormality as well as normal-appearing brain
tissue when possible. To prevent strong contribution to the
spectra from subcutaneous fat signals, the VOI was completely
enclosed within the brain and positioned at the center of the
phase-encoded field of view, which was large enough to prevent
wraparound artifact. A typical VOI consisted of an 8 � 8-cm
region placed within a 16 � 16-cm field of view on a 1.5–2-cm
transverse section. A 16 � 16 phase-encoding matrix was used
to obtain the 8 � 8 array of spectra in the VOI, with an in-plane
resolution of 1 � 1 cm and a voxel size of 1 � 1 � 1.5 cm3 or
1 � 1 � 2 cm3, depending on the size of the lesion. The
metabolite peaks were assigned as follows: Cho, 3.22 ppm; Cr,
3.02 ppm; NAA, 2.02 ppm; mobile lipids, 0.5–1.5 ppm. Lactate
was identified at 1.33 ppm by its characteristic doublet that is
caused by J modulation and inverted at TE of 144 ms. Metab-
olite ratios were obtained by a neuroradiologist (M.L.) experi-
enced with spectroscopy and again blinded to the perfusion
MR imaging and conventional MR imaging data. Maximal
Cho/Cr and Cho/NAA ratios and minimum NAA/Cr ratios
were obtained from spectral maps. To ensure quality control
and acceptable quality of spectroscopic data, normal values for
NAA/Cr and Cho/Cr were obtained in normal-appearing white
matter in the contralateral hemisphere.
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Statistical Analysis
Sensitivity, specificity, PPV, and NPV were calculated for

correct identification of high-grade gliomas. Hence, tumors
classified as high grade and found at histologic examination to
be high grade were considered true-positive findings; low-grade
gliomas that were histologically confirmed as low grade were
considered true-negative findings. For rCBV and metabolite
ratios, receiver operating characteristic (ROC) curve analyses
were used to evaluate the performance of simple diagnostic
tests that declared a glioma to be high grade if and only if the
relevant measure (eg, rCBV) for that patient was greater than
or equal to some value K. This permitted a determination of
the sensitivity, specificity, PPV, NPV, and total error associated
with each measure as a function of the threshold K, used to
identify high-grade gliomas. To determine potentially useful
threshold values for rCBV, Cho/Cr, and Cho/NAA in differen-
tiating low- from high-grade gliomas, threshold values were
found that 1) minimized the observed number of tumor grade
misclassifications (C2 error � fraction of misclassified tumors)
and 2) maximized the average of the observed sensitivity and
specificity (C1 error). Hence, C1 � 1 - (sensitivity � specific-
ity)/2. The Mann-Whitney test was used to compare histologi-
cally verified low- and high-grade gliomas in terms of rCBV,
Cho/Cr, Cho/NAA, and NAA/Cr. A P value less than .05 was
considered to indicate a statistically significant difference.

Results
The sensitivity, specificity, PPV, and NPV for de-

termination of a high-grade glioma with conventional
MR imaging were 72.5%, 65.0%, 86.1%, and 44.1%,
respectively. For a minimum C2 error, a threshold
value of 1.75 for rCBV provided sensitivity, specific-
ity, PPV, and NPV of 95.0%, 57.5%, 87.0%, and
79.3%, respectively. For a minimum C1 error, a
threshold value of 2.97 for rCBV provided sensitivity,
specificity, PPV, and NPV of 72.5%, 87.5%, 94.6%,
and 51.5%, respectively (Table 1). A threshold value
of 2.97 provided the same sensitivity as that of con-
ventional MR imaging but higher specificity and PPV.
A threshold value of 2.18 provided the same specific-
ity as that of conventional MR imaging but higher
sensitivity, PPV, and NPV (Table 1).

A threshold value of 1.08 for Cho/Cr provided the
minimum C2 error and 97.5%, 12.5%, 77.0%, and
62.5% for the sensitivity, specificity, PPV, and NPV
for determination of a high-grade glioma. A threshold
value of 1.56 provided the minimum C1 value and
75.8%, 47.5%, 81.2%, and 39.6% for the sensitivity,
specificity, PPV, and NPV for determination of a
high-grade glioma. Threshold values that provided
the same sensitivity and specificity as those of con-
ventional MR imaging were 1.61 and 1.88, respec-
tively (Table 2).

A threshold value of 0.75 for Cho/NAA provided
minimum C2 error and 96.7%, 10.0%, 76.3%, and
50.0% for the sensitivity, specificity, PPV, and NPV
for determination of a high-grade glioma. A threshold
value of 1.6 for Cho/NAA provided minimum C1
error and 74.2%, 62.5%, 85.6%, and 44.6% for the
sensitivity, specificity, PPV, and NPV for determina-
tion of a high-grade glioma. Threshold values that
provided the same sensitivity and specificity as those
of conventional MR imaging were 1.66 and 1.78,
respectively (Table 3).

The combination of rCBV, Cho/Cr, and Cho/NAA
resulted in sensitivity, specificity, PPV, and NPV of
93.3%, 60.0%, 87.5%, and 75%, respectively, for min-
imum C2 error, and 70.8%, 92.5%, 96.6%, and
51.4%, respectively, for minimum C1 error. For the
same sensitivity as that of conventional MR imaging
(72.5%), the specificity and PPV were higher, and for
the same specificity as that of conventional MR im-
aging (65.0%), the sensitivity, PPV, and NPV were
higher than those of conventional MR imaging alone
when using the combination of rCBV, Cho/Cr, and
Cho/NAA (Table 4, Fig 3).

The mean, standard deviation, and ranges for
rCBV, Cho/Cr, Cho/NAA, and NAA/Cr are shown in
Table 5. A statistically significant difference was
noted in the rCBV, Cho/Cr, Cho/NAA, and NAA/Cr
between low- and high-grade gliomas (P � .0001,

TABLE 1: Threshold values for rCBV for differentiation between low- and high-grade gliomas

Description rCBV Sensitivity Specificity PPV NPV C2 Error C1 Error

Minimum C2 Error* 1.75 95.0 57.5 87.0 79.3 14.4 23.8
Minimum C1 Error† 2.97 72.5 87.5 94.6 51.5 23.8 20.0
Same sensitivity as cMRI 2.97 72.5 87.5 94.6 51.5 23.8 20.0
Same specificity as cMRI 2.18 87.5 65.0 88.2 63.4 18.1 23.0

Note.—Conventional MR imaging (cMRI) sensitivity 72.5%, specificity 65.0%, PPV 86.1%, NPV 44.1%, C2 error 29.4%, and C1 error 31.8%.
* C2 � the percentage of observed data points misclassified.
† C1 � 1 � (sensitivity � specificity)/2. This maximizes the average of sensitivity and specificity.

TABLE 2: Threshold values for Cho/Cr ratio for differentiation between low- and high-grade gliomas

Description Cho/Cr Sensitivity Specificity PPV NPV C2 Error C1 Error

Minimum C2 Error* 1.08 97.5 12.5 77.0 62.5 23.8 45.0
Minimum C1 Error† 1.56 75.8 47.5 81.2 39.6 31.3 38.3
Same sensitivity as cMRI 1.61 72.5 50.0 81.3 37.7 33.1 38.8
Same specificity as cMRI 1.88 55.0 65.0 83.5 33.3 41.9 38.8

Note.—Conventional MR imaging (cMRI) sensitivity 72.5%, specificity 65.0%, PPV 86.1%, NPV 44.1%, C2 error 29.4%, and C1 error 31.8%.
* C2 � the percentage of observed data points misclassified.
† C1 � 1 � (sensitivity � specificity)/2. This maximizes the average of sensitivity and specificity.
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.0121, .001, and .0038, respectively) (Table 5). Within
the high-grade glioma group, there were 73 anaplastic
gliomas (anaplastic astrocytomas, n � 26; anaplastic
oligodendrogliomas, n � 7; anaplastic mixed oligoas-
trocytomas, n � 40) and 47 glioblastoma multiforme.
No statistically significant difference was noted in the
rCBV, Cho/Cr, Cho/NAA, and Cho/Cr ratios be-
tween the anaplastic gliomas and glioblastoma multi-
forme groups (P � .549, .302, .363, and .915, respec-
tively).

Discussion

Current methods of grading gliomas have inherent
limitations. The current reference standard of his-
topathologic grading can be inaccurate when biopsy
samples are not taken from the most malignant tumor
region or when the tumor is not completely resected.
This is a particular problem with glioma because of
the infiltrative proliferation of the tumor. Although
histopathologic grading is often performed on the
enhancing portion of the tumor, vascular networks in
the peritumoral region serve as a path for tumoral

infiltration along perivascular spaces. The region of
highest vascularity and malignancy may then be
within the so-called peritumoral or perienhancing re-
gion (22).

Radiologic grading of tumors with conventional
MR imaging is not always accurate, with sensitivity in
identifying high-grade gliomas ranging from 55.1% to
83.3% in other studies (7, 8, 11) and 72.5% in this
study. Yet, accurate tumor grading has important
implications for treatment planning: Patients with an
erroneous diagnosis of high-grade glioma will un-
dergo unnecessary adjuvant therapy; patients with an
erroneous diagnosis of low-grade glioma will be
treated conservatively, with concomitant morbidity
and mortality.

Results of several previous studies suggest that
rCBV measurements may improve grading. Sugahara
et al (18) correlated maximal rCBV values histologi-
cally and angiographically in 30 patients, with mean
values of 7.32, 5.84, and 1.26 for glioblastomas, ana-
plastic astrocytomas, and low-grade gliomas, respec-
tively. Aronen et al (16) found mean maximal rCBV
values of 3.64 and 1.11 in high- and low-grade glio-

TABLE 3: Threshold values for Cho/NAA ratio for differentiation between low- and high-grade gliomas

Description Cho/NAA Sensitivity Specificity PPV NPV C2 Error C1 Error

Minimum C2 Error* 0.75 96.7 10.0 76.3 50.0 25.0 46.7
Minimum C1 Error† 1.60 74.2 62.5 85.6 44.6 28.8 31.7
Same sensitivity as cMRI 1.66 72.5 62.5 85.3 43.1 30.0 32.5
Same specificity as cMRI 1.78 67.5 65.0 85.3 40.0 33.1 33.8

Note.—Conventional MR imaging (cMRI) sensitivity 72.5%, specificity 65.0%, PPV 86.1%, NPV 44.1%, C2 error 29.4%, and C1 error 31.8%.
* C2 � the percentage of observed data points misclassified.
† C1 � 1 � (sensitivity � specificity)/2. This maximizes the average of sensitivity and specificity.

TABLE 4: rCBV, Cho/Cr ratio, and Cho/NAA ratio together for differentiation between low- and high-grade glioma

Description Sensitivity Specificity PPV NPV C2 Error C1 Error

Minimum C2 Error* 93.3 60.0 87.5 75.0 15.0 23.3
Minimum C1 Error† 70.8 92.5 96.6 51.4 23.7 18.3
Same sensitivity as cMRI 72.5 87.5 94.6 51.5 23.8 20.0
Same specificity as cMRI 89.2 65.0 88.4 66.7 16.9 22.9

Note.—Conventional MR imaging (cMRI) sensitivity 72.5%, specificity 65.0%, PPV 86.1%, NPV 44.1%, C2 error 29.4%, and C1 error 31.8%.
* C2 � the percentage of observed data points misclassified.
† C1 � 1 � (sensitivity � specificity)/2. This maximizes the average of sensitivity and specificity.

TABLE 5: Perfusion MR measure and metabolite ratios for low- and high-grade gliomas and normal values

Technique and Measure

Low-Grade Glioma (n � 40) High-Grade Glioma (n � 120)

P Value*Range Mean SD Range Mean SD

Perfusion MR imaging
rCBV 0.77–9.84 2.14 1.67 0.96–19.80 5.18 3.29 � 0.0001

MR Spectroscopy
Cho/Cr 0.85–4.00 1.75 0.60 0.83–13.80 2.43 1.92 0.0121
Cho/NAA 0.60–6.80 1.96 1.43 0.53–28.90 3.22 3.65 0.001
NAA/Cr 0.33–3.60 1.20 0.71 0.10–3.93 0.90 0.62 0.0038

Normal values†
Cho/Cr 0.43–1.37 0.88 0.19 0.44–2.00 0.87 0.24 0.425
NAA/Cr 1.11–2.89 1.72 0.41 0.45–4.74 1.73 0.51 0.958

* Mann-Whitney test.
† Ratios in normal-appearing contralateral brain.
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mas, respectively (n � 19). Knopp et al (11) had
similar mean maximal rCBV values of 5.07 and 1.44
in high- and low-grade gliomas, respectively (n � 29).
These values are comparable to our findings, with
mean maximal rCBV values of 5.18 and 2.14 for high-
and low-grade gliomas, respectively (Table 5, n �
160). Lev and Rosen (23) used an rCBV threshold
value of 1.5 in discriminating among 32 consecutive
patients with glioma. Thirteen (100%) of 13 astrocy-
tomas were correctly categorized as high-grade glio-
mas. Three of these did not enhance after adminis-
tration of contrast material. Of the nine low-grade
astrocytomas, seven were correctly classified. The
sensitivity and specificity with use of an rCBV of 1.5
as a threshold value were 100% and 69%, respec-
tively. This compares with the results from this study
of 95.0% and 57.5% sensitivity and specificity, respec-
tively, by using 1.75 as the threshold value. More
recently, Shin et al (24) demonstrated mean rCBV
ratios of 4.91 in high-grade gliomas and 2.00 in low-
grade gliomas, in 17 patients; these ratios were similar
to the ratios in this study of 5.18 and 2.14 in high- and
low-grade gliomas, respectively. The threshold or cut-
off value of 2.93 with use of ROC curve analysis is
comparable to our value of 2.97 minimizing for C1
error (Table 1).

Besides vascular proliferation, cellularity, mitotic
activity, nuclear pleomorphism, and necrosis are im-
portant criteria in histopathologic grading of gliomas.
Ki-67 labeling is used in histologic examination as a
marker for cellular proliferation. A higher rate of
Ki-67–positive cells corresponds to greater malig-
nancy in gliomas. Metabolite ratios, in particular Cho
levels, have correlated with Ki-67 levels in gliomas
(58). MR spectroscopic measurements of Cho/Cr and
Cho/NAA ratios should therefore be helpful in the
grading of gliomas.

However, to date, there have been few systematic
attempts to compare the sensitivity, specificity, PPV,
and NPV of perfusion MR imaging and MR spectros-
copy with those of conventional MR imaging in gli-
oma grading. To make a comparison, we determined
threshold values from logistic regression and ROC
analyses. However, it is not always clear what criteria
should be used in determining an “optimum” thresh-
old. For example, one could choose to minimize C1
error, which minimizes the average of the false-posi-
tive and false-negative error rates. This would be
appropriate if the consequence of misclassifying low-
grade gliomas is the same as that of misclassifying
high-grade gliomas and the two are equally likely to
be presented to you for classification. Alternatively,
one could choose to minimize the C2 error, the total
number of misclassified tumors observed in the data.
This adjusts for a difference in the relative frequency
of low- and high-grade gliomas in the patient popu-
lation. In particular, if high-grade gliomas are much
more prevalent, then a high misclassification rate of
high-grade gliomas would result in a high total num-
ber of misclassified gliomas. In the real world, high-
grade gliomas are more common than low-grade gli-
omas. Hence, choosing the threshold to minimize C2

error will tend to yield high sensitivity and relatively
low specificity. These are the reasons for presenting
two sets of results with threshold values for rCBV and
metabolite ratios that minimize both C1 and C2 error
values. For application in clinical practice, however, a
threshold that minimizes C2 error is most appropriate
(Tables 1–3).

The sensitivity of rCBV in glioma grading in our
study was 95.0% (minimizing for C2 error), indicating
a high true-positive rate and low false-negative rate.
Hence, if the rCBV is above 1.75, there is a high
probability that the tumor will be a high-grade gli-
oma. Conversely, when rCBV is below 1.75, the tu-
mor is unlikely to be high-grade glioma. However, the
relatively low specificity means that false-positive
rates are relatively high and true-negative rates are
correspondingly low. In other words, some low-grade
gliomas will be falsely identified as high-grade glio-
mas. However, this is the lesser of two evils. First,
low-grade gliomas are relatively less common than
high-grade gliomas, so fewer errors will be made in
absolute terms. Second, a low-grade glioma misiden-
tified as a high-grade glioma will be treated aggres-
sively with some increase in morbidity. However, a
high-grade glioma misidentified as a low-grade gli-
oma will be treated conservatively, resulting in poten-
tial rapid death.

The high NPV (79.3%) is likewise a significant
finding, as gliomas with low rCBV (�1.75) are un-
likely to have high-grade components. Hence, it is an
excellent tool for excluding the presence of a high-
grade glioma (23), an issue that often confronts the
neuroradiologist and neuropathologist. The low total
error when using rCBV alone suggests that rCBV in
itself is an accurate predictor of tumor grade, with a
14.4% chance of error when using 1.75 as the arbi-
trary threshold value. When one chooses threshold
values that demonstrate the same sensitivity as that of
conventional MR imaging (72.5%), the specificity,
PPV, and NPV are superior to those of conventional
MR imaging. Similarly, when one chooses threshold
values that demonstrate the same specificity as that of
conventional MR imaging (65.0%), the sensitivity,
PPV, and NPV are superior to those of conventional
MR imaging (Table 1).

The sensitivities (minimized for C2 error) of
Cho/Cr and Cho/NAA of 97.5 and 96.7%, respec-
tively, in this study confirm that metabolite ratios can
be useful in determining tumor grade. However, the
low specificities (12.5% for Cho/Cr and 10.0% for
Cho/NAA) are due to the high levels for Cho that we,
and others, have observed in some low-grade gliomas.
Again, however, high sensitivity in identifying high-
grade gliomas is more important than high specificity
because of the relatively fewer cases of low-grade
glioma and the more serious consequences of false-
negative findings.

Despite the low specificities, a significant differ-
ence was noted in Cho/Cr, Cho/NAA, and NAA/Cr
ratios (P � .012, .001, and .004, respectively) for
differentiating between low- and high-grade gliomas
(Table 5). A review of the literature, taking into
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account differences in MR spectroscopic technique
such as the choice of TE and method for determina-
tion of metabolite ratios, demonstrates that the mean
maximal values obtained for Cho/Cr and Cho/NAA
and mean minimum values for NAA/Cr (Table 5) in
our study are comparable to previously published
data in differentiating between low- and high-grade
gliomas (7, 31, 45, 49, 59). Other data in the literature
present metabolite levels and direct metabolite con-
centrations in a slightly different manner than pre-
sented in the current study, but they clearly also show
differences in Cho levels between low- and high-grade
gliomas (35, 54). In the current study, we had a
number of reasons for using Cho/Cr and Cho/NAA
ratios for assessing tumor grade. First, histopatholo-
gically, the linear correlation of Cho with Ki-67 label-
ing index or cellular proliferative activity suggests that
Cho may be a strong predictor of tumor grade (57,
58). Second, although it may be possible to provide
better discrimination combining other metabolites
such as alanine, lipids, lactate, myo-inositol, glu-
tamine, and glutamate, it is often not possible to
perform MR spectroscopy at multiple TEs in a clini-
cal setting to provide metabolites such as myo-inosi-
tol, glutamine, and glutamate detectable best at short
TE. Third, to analyze multiple metabolites, linear
discriminant analysis (50) or automated spectral anal-
ysis software (69) is usually necessary but not com-
mercially available as yet.

One of the challenges in spectroscopy, even with
current automated techniques, is obtaining reliable
and reproducible intrapatient and interpatient data.
To ensure quality control in the data, measurements
of normal Cho/Cr and NAA/Cr levels were also ob-
tained in the contralateral unaffected white matter as
part of the MR spectroscopy multivoxel, 2D CSI mea-
surement. Despite possible regional variations in me-
tabolite ratios within the brain, it was reassuring to
find that normal values for Cho/Cr and Cho/NAA
obtained in the low- and high-grade glioma groups
were almost identical. Normal Cho/Cr and NAA/Cr
levels were 0.88 and 1.72 for low-grade gliomas and
0.87 and 1.73 for high-grade gliomas (Table 5). This
not only provides a means for ensuring that the MR
spectroscopic data are reliable, but also allows for
further comparison between the abnormal data and
normative data. In this study, the comparison was
made only between low- and high-grade gliomas;
however, a comparison between metabolite ratios
within the tumor and normal voxels in the same pa-
tient is shown in Table 5.

The role of necrosis in glioma grading is important
(70). The presence of necrosis is one important dis-
tinction between anaplastic astrocytomas and glio-
blastoma multiforme. In our series, lipid and lactate
were found in 5.0% of low-grade gliomas and in
16.6% of high-grade gliomas. There is certainly a
difference in finding lipids and lactate between the
two groups, and although formal quantification and
analyses were not performed in this study, lipids and
lactate do correlate with necrosis in high-grade gli-
oma and may also be useful in differentiating glioma

grades (27, 45, 71). The frequency of elevated lipid
and lactate in the high-grade glioma group was rela-
tively low compared with that of previous studies (45,
71). This may be explained by the population bias in
the sample of 73 anaplastic gliomas versus 47 glio-
blastomas. Furthermore, as this study did not focus
on lipids and lactate, formal quantification of these
metabolites was not performed, and hence small
amounts of lipids and lactate that may be obscured by
baseline noise may not be detected.

In a clinical setting, where decisions such as extent
of tumoral resection and addition and dose of post-
operative chemotherapy, radiation therapy, and inter-
val of follow-up must be made, threshold values can
be used as important supplementary information in
the noninvasive, neuroradiologic grading of gliomas.
A lesion that may have nonspecific conventional MR
imaging findings (lack of contrast material enhance-
ment, no mass effect, no necrosis, and no edema), but
that demonstrates an rCBV value of 7.72 and Cho/
NAA ratio of 2.60, for example, has high sensitivity
and specificity for being a high-grade glioma (Fig 1).
A comparative lesion (Fig 2) with conventional MR
imaging findings suggestive of a high-grade glioma
(contrast material enhancement, necrosis, mass ef-
fect, and edema) but that demonstrates an rCBV of
1.70 and a Cho/NAA ratio of 0.90 is more in keeping
with a low-grade glioma. Hence, using these threshold
values in cases that may have nonspecific conven-
tional MR imaging findings increases our confidence
in glioma grading.

Of further clinical interest is the differentiation
between anaplastic gliomas and glioblastoma multi-
forme in the high-grade glioma group. As with our
findings, previously published data in a group of 26
high-grade gliomas (11) also indicate no significant
difference in rCBV between anaplastic astrocytomas
and glioblastoma multiforme. Discriminating be-
tween these two groups has been demonstrated with
in vitro (72) and in vivo (71, 73) MR spectroscopy. A
limitation in our study is the perfusion and spectro-
scopic imaging of a number of patients (n � 43) after
surgery. Although it is possible that surgery and post-
operative changes may affect tumor vascularity and
cellularity, we believe that because these patients only
had either partial resection or biopsy, the final statis-
tical analysis would not have been affected greatly by
this. We examined the preoperative patients sepa-
rately, and the results and conclusion did not differ
significantly. Another potential limitation of our
study is the semiquantification of metabolite ratios by
using an internal reference method within the same
voxel. The effects of tumor heterogeneity, regional
differences in absolute and relative metabolite con-
centrations, and various pathologies on metabolite T2
relaxation times is difficult to assess. Hence, using Cr
as a reference metabolite may increase variability and
inaccuracy. Methods to normalize Cho to contralat-
eral normal Cho or contralateral normal Cr as well as
methods to provide absolute quantification of metab-
olites in gliomas have been described (59, 74). Nor-
malizing our results to contralateral normal Cho did
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not seem to improve statistical significance substan-
tially; however, it would seem that absolute metabo-
lite quantification methods should improve the sensi-
tivity and possibly the specificity of MR spectroscopy
(74). Finally, the lower sensitivity and specificity of
Cho compared with rCBV suggests that although Cho
levels may correlate directly with tumor cellularity,
tumor cellularity may not correlate directly with tu-
mor grade. Tumor grade seems to be more reliably
correlated with necrosis, nuclear atypia, mitoses, and
vascular hyperplasia (13); hence, rCBV may provide
stronger correlation with tumor grade than does Cho.

This study demonstrates that rCBV and metabolite
measurements can improve preoperative tumor grad-
ing. MR spectroscopy and perfusion MR imaging are
useful adjuncts to conventional MR imaging in plan-
ning postoperative chemotherapy, antiangiogenic
therapy, and radiation therapy (75–77). Since these
techniques avoid some of the problems of sampling
error associated with histopathologic examination, it
is conceivable that such methods may provide a more
accurate overall assessment of tumors. Demonstrat-
ing that rCBV and MR spectroscopy are sensitive
techniques in this study is an important step in this
regard. However, the question of whether one can
improve the long-term outcome for patients with gli-
omas remains. Long-term outcome studies are re-
quired to determine whether rCBV, Cho levels, or
pathology is the best predictor of patient outcome.

Conclusion

Preoperative grading of gliomas based on conven-
tional MR imaging is often unreliable. Independently
and in combination, rCBV measurements and Cho/Cr
and Cho/NAA ratios can significantly improve the
sensitivity and predictive values of preoperative gli-
oma grading. The rCBV measurements are the best
parameter for glioma grading. This is extremely im-
portant for determining the most optimal therapy
regimen and the regularity and aggressiveness of
postoperative follow-up and treatment. At our insti-
tution, perfusion MR imaging and MR spectroscopy
not only have become a routine part of glioma imag-
ing, but also have become an important adjunctive
tool in providing information in gliomas and regions
of the brain that may have eluded histopathologic
assessment. Perfusion MR imaging and MR spectros-
copy can potentially overcome the limitation of sam-
pling error with histopathologic grading of tumor by
the ability to sample the entire lesion noninvasively in
vivo. Ongoing data collection from longitudinal stud-
ies is crucial to determine if rCBV and metabolite
ratios can, in the long run, be comparable to his-
topathologic examination in predicting tumor behav-
ior and patient prognosis.
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