Segmental Artery Exchange Technique for Stable 4F Guiding-Catheter Positioning in Embolization of Spinal Vascular Malformations

N.F. Fanning, A. Pedroza, R.A. Willinsky and K.G. terBrugge

AJNR Am J Neuroradiol 2007, 28 (5) 875-876
http://www.ajnr.org/content/28/5/875
Segmental Artery Exchange Technique for Stable 4F Guiding-Catheter Positioning in Embolization of Spinal Vascular Malformations

SUMMARY: For anatomic and technical reasons, it is often difficult to achieve guiding-catheter stability in the segmental arteries during embolization of spinal vascular lesions. We have developed a segmental artery exchange technique using a thin-walled 4F nontapered catheter that is safe and achieves a stable guiding-catheter position. This catheter accommodates both the flow-guided and variable-stiffness microcatheters, allowing selective catheterization and treatment of spinal vascular lesions.

Description of the Technique

Embolization procedures were performed with the patient under general anesthesia and systemic heparinization (100 U/kg intravenously). Our procedure involved a single femoral puncture access with a 5F sheath. Diagnostic spinal angiography was performed with several specialized catheters, including 4F or 5F Cobra 1 and 2 and Simmons 1 and 2. The choice of catheter depended on the aortic anatomy and orientation of the segmental artery orifice. After identifying the segmental artery supplying the spinal lesion, we then navigated a 260-cm exchange-length 0.035-inch angled Glidewire (Terumo Medical, Somerset, NJ) distally into the segmental artery under roadmap conditions (Fig 1). A torque device aided distal placement. The angiography catheter was removed and exchanged for the 4F Berenstein II catheter. This catheter has the following features: length of 100 cm, inner diameter of 0.042 inches, short primary curve angle of approximately 70° to the shaft, and 0.038-inch guidewire compatibility.

The catheter was positioned distally in the segmental artery, as close as possible to the origin of the dural or radiculomedullary arteries supplying the vascular lesion (Figs 1 and 2). A Magic 1.2 FM microcatheter or Prowler 10 was then easily tracked without friction though the 4F catheter in all patients. The Magic microcatheter advancement was supported with a 0.008-inch guidewire (Mirage 008, ev3, Irvine, Calif), and the Prowler 10 microcatheter advancement was supported with a 0.010-inch guidewire (Transend 10, Boston Scientific/Target Therapeutics, Fremont, Calif), allowing selective catheterization of the main arterial branches feeding the lesion. The stable guiding-catheter position greatly improved the pushability of the microcatheter. Roadmap injections could not be performed through the 4F catheter with the microcatheter in place; however, roadmap injections through the microcatheter could be performed. We have not found this feature to be a limitation. In all 3 patients, treatments were considered successful in that the planned treatments were completed.

Discussion

Embolization of spinal DAVFs and AVMs can be difficult because of tortuosity and the small diameter of the feeder and distal location of the fistula site. A meta-analysis found that only approximately 46% of patients who underwent embolization were successfully treated.1 Oran et al2 used a triple-axial technique (a guiding catheter inside a long vascular sheath) to improve the proximal stiffness and enhance the pushability of

Received November 29, 2006; accepted November 30.

From the Division of Neuroradiology, Department of Medical Imaging, Toronto Western Hospital, Toronto, ON, Canada.

Please address correspondence to Robert Willinsky, MD, Division of Neuroradiology, Department of Medical Imaging, Toronto Western Hospital, 399 Bathurst St, Toronto, ON, M5T 2S8, Canada; e-mail: robert.willinsky@uhn.on.ca
the microcatheter; however, this technique required the use of a 7F vascular sheath. Touho et al. described successful endovascular treatment of a spinal DAVF at the L5-S1 level by using a thin-walled nontapered 4F catheter (Glidecath II, Terumo) and Tracker-18 microcatheter (Target Therapeutics). This fistula was fed from dural branches of the internal iliac artery and therefore likely had anatomy that favored catheter stability. The advantages of our exchange technique are that it is compatible with a short 5F femoral sheath, that it allows guiding-catheter stability in segmental arteries arising from the aorta, and that it enables distal safe placement of a 4F guiding catheter in small segmental arteries close to the origin of the radicular or dural arteries feeding a vascular spinal lesion.

We have bench-tested the 4F Berenstein II catheter and found it large enough to accommodate the Magic catheter range (proximal/distal outer diameter [OD]: 2.7F/1.2–1.8F) and the Prowler catheter range: Prowler 10, 14, and the larger Prowler Plus (proximal/distal OD: 2.9F/2.3F). It likely will accept other microcatheters with a proximal OD of 2.9F or smaller. Its simple shape necessitates selective catheterization of the orifice of the segmental artery by using specialized spinal angiographic catheters. Its inner diameter is not sufficient to allow the Spinnaker Elite (Boston Scientific) catheters (proximal/distal OD: 3.0F/1.8F or 1.5F) to pass without friction. A 5F guide should be used if these specific flow-directed catheters are required. This exchange technique may allow patients to receive endovascular treatment that would not be feasible with standard catheters used for spinal angiography.

References