Severe Diffuse Systemic Amyloidosis with Involvement of the Pharynx, Larynx, and Trachea: CT and MR Findings

R. Gilad, P. Milillo and P.M. Som

AJNR Am J Neuroradiol 2007, 28 (8) 1557-1558
doi: https://doi.org/10.3174/ajnr.A0604
http://www.ajnr.org/content/28/8/1557
AMYLOIDOSIS IS A RARE, INFILTRATIVE CONDITION CHARACTERIZED BY DEPOSITION OF ABNORMAL PROTEIN IN VARIOUS TISSUES. WHEN SYSTEMIC AMYLOIDOSIS INVOLVES REGIONS OF THE HEAD AND NECK, THE LARYNX AND TRACHEA ARE THE MOST COMMON SITES. TO DATE, THERE HAVE BEEN ONLY 2 PRIOR REPORTED CASES OF SYSTEMIC AMYLOIDOSIS INVOLVING THE PHARYNX. WE PRESENT A CASE OF SEVERE DIFFUSE SYSTEMIC AMYLOIDOSIS WITH EXTENSIVE INVOLVEMENT OF THE PHARYNX, LARYNX, TRACHEA, LUNGS, EYELIDS, AND BREASTS. WE ALSO REVIEW THE IMAGING CHARACTERISTICS AND PERTINENT LITERATURE.

CASE REPORT

The patient was a 64-year-old woman with a history of myasthenia gravis for 30 years, type 1 diabetes mellitus, and amyloidosis for 4 years. In the past, the patient was found to have amyloid deposits in the eyelids and breasts. A biopsy confirmed findings consistent with the AL type (amyloid light chain) of amyloidosis. The patient presented with increased shortness of breath and hoarseness on the most recent hospital admission. There was no past medical history of renal failure or multiple myeloma. The patient was being treated for myasthenia gravis with pyridostigmine (Mestinon) and high-dose steroids and had received plasmapheresis therapy in the past. Physical examination was significant for bilateral ptoses and indurations of the eyelids, pharyngeal fullness, shortness of breath, and a decreased range of motion of the neck. Her urine was negative for Bence-Jones protein, and the results of serum protein and urine protein electrophoreses were unremarkable.

A tracheostomy was performed, and a high-resolution chest CT study showed extensive interstitial lung disease, abnormally attenuated breast tissue (Fig 1) for the patient’s stated age, and small nodules in the tracheal mucosa with marked thickening of the tracheal wall with significant stenosis (not shown). An endoscopic examination of the trachea revealed nodular deposits and plaques on the mucosal surface along its entire length. Noncontrast MR imaging of the neck was performed on a 1.5T magnet. Contrast was not administered because of a reported allergy to gadolinium. The images showed large submucosal, nodular masses in the pharynx and supraglottic larynx, and thickening of the tracheal wall with stenosis. These masses had intermediate T1-weighted signal intensity (Figs 2A) and low T2-weighted signal intensity (Figs 2B, C, D). The large submucosal supraglottic laryngeal deposits were the primary cause of her airway obstruction. These findings on imaging were consistent with systemic amyloidosis. Biopsy specimens of the tracheal wall deposits on the mucosal surface confirmed the diagnosis of AL-type amyloidosis.

DISCUSSION

Amyloidosis is a condition characterized by infiltration and extracellular deposition of homogeneous, eosinophilic proteinaceous fibrils in a beta-pleated sheet configuration. It classically has an apple-green birefringence when stained with Congo red and viewed under polarized light. From a clinical standpoint, it may be classified as a localized or systemic disease. The localized disease involves only 1 organ, typically the larynx or brain (where it has been associated with aging and Alzheimer disease). Systemic amyloidosis involves many organ systems and is typically divided into 3 separate categories. Primary amyloidosis (AL type or amyloid light chain) is the result of spontaneous overproduction of the antibody light chain in the bone marrow plasma cell. Secondary amyloidosis (AA type or amyloid A protein) occurs as a result of an underlying condition such as multiple myeloma; chronic infections (tuberculosis or osteomyelitis); and chronic inflammatory diseases such as rheumatoid arthritis, Sjögren disease, and ankylosing spondylitis. The familial type (ATTR type, or amyloid transthyretin protein) is rare and exhibits an autosomal dominant pattern of inheritance, and the amyloid deposits are composed of the protein transthyretin, which is made in the liver. There are 12 other protein subtypes that have been identified but are far less common.1-4

From a radiographic standpoint, MR imaging is the technique of choice to demonstrate the most specific features of amyloidosis. Typically, the amyloid deposits have intermediate T1-water-weighted signal intensity (Figs 2A) and low T2-weighted signal intensity (Figs 2B, C, D).
Amyloidosis is a rare, infiltrative condition characterized by deposition of abnormal protein in various tissues. When systemic amyloidosis involves regions of the head and neck, the larynx and trachea are the most common sites. To date, there have been only 2 previous reported cases of systemic amyloidosis involving the pharynx. We described the case of a patient with severe systemic amyloidosis who presented with airway obstruction as a result of extensive involvement of the larynx, trachea, nasopharynx, and oropharynx. We also reported the findings on imaging. There was also a review of the literature of amyloid deposits in the pharynx.

References